Building correct estimation algorithms as a constrained optimization problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 529-535 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For estimation algorithms, the problem of building correct algorithms by modifying weights of features and weights of objects is examined. Criteria for the possibility to build a correct algorithm are obtained for certain cases. Conditions of the possibility to build a correct algorithm are obtained in terms of solving a constrained optimization problem. An optimization method is proposed. Under these conditions, the proposed method significantly reduces the computational complexity of synthesizing a correct algorithm.
@article{ZVMMF_2008_48_3_a11,
     author = {A. Yu. Smetanin},
     title = {Building correct estimation algorithms as a~constrained optimization problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {529--535},
     year = {2008},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a11/}
}
TY  - JOUR
AU  - A. Yu. Smetanin
TI  - Building correct estimation algorithms as a constrained optimization problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 529
EP  - 535
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a11/
LA  - ru
ID  - ZVMMF_2008_48_3_a11
ER  - 
%0 Journal Article
%A A. Yu. Smetanin
%T Building correct estimation algorithms as a constrained optimization problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 529-535
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a11/
%G ru
%F ZVMMF_2008_48_3_a11
A. Yu. Smetanin. Building correct estimation algorithms as a constrained optimization problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 529-535. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a11/

[1] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. II”, Kibernetika, 1977, no. 6, 21–27 | Zbl

[2] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. III”, Kibernetika, 1978, no. 2, 35–43 | Zbl

[3] Zhuravlev Yu. I., Isaev I. V., “Postroenie algoritmov raspoznavaniya, korrektnykh dlya dannoi kontrolnoi vyborki”, Zh. vychisl. matem. i matem. fiz., 19:3 (1979), 726–738 | MR | Zbl

[4] Rudakov K. V., O nekotorykh klassakh algoritmov raspoznavaniya (obschie rezultaty), VTs AN SSSR, M., 1980

[5] Rudakov K. V., O nekotorykh klassakh algoritmov raspoznavaniya (parametricheskie modeli), VTs AN SSSR, M, 1981

[6] Ryazanov V. V., “Optimizatsiya algoritmov vychisleniya otsenok no parametram, kharakterizuyuschim predstavitelnost etalonnykh strok”, Zh. vychisl. matem. i matem. fiz., 16:6 (1976), 1559–1570 | MR | Zbl

[7] Ryazanov V. V., Optimalnye kollektivnye resheniya v zadachakh raspoznavaniya i klassifikatsii, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs RAN, M., 1994

[8] Katerinochkina N. N., Metody vydeleniya maksimalnoi sovmestnoi podsistemy sistemy lineinykh neravenstv, Soobsch. po prikl. matem., VTs RAN, M., 1997

[9] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[10] Pshenichnikov S. B., Shtern L. G., “Metody resheniya sistem algebraicheskikh nelineinykh uravnenii”, Matem. metody i avtomatizirovannye sistemy v geologii. Obzor, M., 1995

[11] Pshenichnikov S. B., “Spinornyi metod isklyucheniya i formuly svyazi mezhdu neizvestnymi v sistemakh nelineinykh algebraicheskikh uravnenii”, Latviiskii matem. ezhegodnik, 30 (1986), 150–161 | MR | Zbl

[12] Zaitsev G. A., Algebraicheskie problemy matematicheskoi i teoreticheskoi fiziki, Nauka, M., 1974 | MR

[13] Rybnikov K. A., Vvedenie v kombinatornyi analiz, MGU, M., 1985 | MR

[14] Edmonds J., “Matroids and the greedy algorithm”, Math. Program., 1 (1971), 127–136 | DOI | MR | Zbl