@article{ZVMMF_2008_48_3_a10,
author = {M. V. Popov and S. D. Ustyugov},
title = {Piecewise parabolic method on a~local stencil for ideal magnetohydrodynamics},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {505--528},
year = {2008},
volume = {48},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a10/}
}
TY - JOUR AU - M. V. Popov AU - S. D. Ustyugov TI - Piecewise parabolic method on a local stencil for ideal magnetohydrodynamics JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 505 EP - 528 VL - 48 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a10/ LA - ru ID - ZVMMF_2008_48_3_a10 ER -
%0 Journal Article %A M. V. Popov %A S. D. Ustyugov %T Piecewise parabolic method on a local stencil for ideal magnetohydrodynamics %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 505-528 %V 48 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a10/ %G ru %F ZVMMF_2008_48_3_a10
M. V. Popov; S. D. Ustyugov. Piecewise parabolic method on a local stencil for ideal magnetohydrodynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 505-528. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a10/
[1] Ustyugov S. D., Popov M. V., “Kusochno-parabolicheskii metod na lokalnom shablone dlya zadach gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 2055–2075 | MR
[2] Collela P., Woodward P., “The piecewise parabolic method for gas-dynamical simulations”, J. Comput. Phys., 54 (1984), 174–201 | DOI
[3] Brio M., Wu C. C., “An upwind differencing scheme for the equations of ideal magnetohydrodynamics”, J. Comput. Phys., 75 (1988), 400–422 | DOI | MR | Zbl
[4] Powell K. G., Roe P. L., Linde T. J. et al., “A solution-adaptive upwind scheme for ideal magnetohydrodynamics”, J. Comput. Phys., 154 (1999), 284–309 | DOI | MR | Zbl
[5] Roe P. L., “Characteristic-based schemes for the Euler equations”, Ann. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl
[6] Tóth G., “The $\bigtriangledown\cdot\mathbf B=0$ constraint in shock-capturins magnetohydrodynamics codes”, J. Comput. Phys., 161 (2000), 605–652 | DOI | MR | Zbl
[7] Gombosi T. I., Powell K. G., De Zeeuw D. L., “Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results”, J. Geophys. Res., 99 (1994), 21525–21539 | DOI
[8] Brackbill J. U., Barnes D. C., “The effect of nonzero $\nabla\cdot\mathbf B$ on the numerical solution of the magnetohydrodynamic equations”, J. Comput. Phys., 35 (1980), 426–430 | DOI | MR | Zbl
[9] Evans C. R., Hawley J. F., “Simulation of magnetohydrodynamic flows: A constrained transport method”, Astrophys. J., 332 (1988), 659–677 | DOI
[10] Balsara D. S., Spicer D. S., “A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations”, J. Comput. Phys., 149 (1999), 270–292 | DOI | MR | Zbl
[11] Barth T. J., On unstructured grids and solvers, Comput. Fluid Dynamics. Lect. Ser., 1990-04, Von Kármán Institute for Fluid Dynamics, 1990
[12] Suresh A., Huynh H. T., “Accurate monotonicity preserving scheme with Runge–Kutta time-stepping”, J. Comput. Phys., 136 (1997), 83–99 | DOI | MR | Zbl
[13] Balsara D. S., Shu C.-W., “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy”, J. Comput. Phys., 160 (2000), 405–452 | DOI | MR | Zbl
[14] Jiang G.-S., Wu C. C., “A high-order WENO finite difference scheme for the equation of ideal magnetohydrodynamics”, J. Comput. Phys., 150 (1999), 561–594 | DOI | MR | Zbl
[15] Balsara D. S., “Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction”, Astrophys. J. Suppl., 151 (2004), 149–184 | DOI
[16] Han J., Tang H., “An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics”, J. Comput. Phys., 220 (2007), 791–812 | DOI | MR | Zbl
[17] Orszag A., Tang C. M., “Small-scale structure of two-dimensional magnetohydrodynamic turbulence”, J. Fluid Mech, 90 (1979), 129–143 | DOI