Exact penalties for optimization problems with 2-regular equality constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 365-372 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new first-order sufficient condition for penalty exactness that includes neither the standard constraint qualification requirement nor the second-order sufficient optimality condition is proposed for optimization problems with equality constraints.
@article{ZVMMF_2008_48_3_a1,
     author = {E. R. Avakov and A. V. Arutyunov and A. F. Izmailov},
     title = {Exact penalties for optimization problems with 2-regular equality constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {365--372},
     year = {2008},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a1/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - A. V. Arutyunov
AU  - A. F. Izmailov
TI  - Exact penalties for optimization problems with 2-regular equality constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 365
EP  - 372
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a1/
LA  - ru
ID  - ZVMMF_2008_48_3_a1
ER  - 
%0 Journal Article
%A E. R. Avakov
%A A. V. Arutyunov
%A A. F. Izmailov
%T Exact penalties for optimization problems with 2-regular equality constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 365-372
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a1/
%G ru
%F ZVMMF_2008_48_3_a1
E. R. Avakov; A. V. Arutyunov; A. F. Izmailov. Exact penalties for optimization problems with 2-regular equality constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 365-372. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a1/

[1] Izmailov L. F., Solodov M. V., Chislennye metody optimizatsii, Fizmatlit, M., 2003

[2] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl

[3] Luo Z. Q., Pang J.-S., Ralph D., Mathematical programs with equilibrium constraints, Cambridge Univ. Press, Cambridge, 1996 | MR

[4] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[5] Arutyunov A. B., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[6] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer, New York, 2000 | MR

[7] Avakov E. P., Arutyunov A. B., Izmailov A. F., “Ob otsenkakh skorosti skhodimosti metodov stepennogo shtrafa”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1770–1781 | MR | Zbl

[8] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006

[9] Avakov E. R., “Usloviya ekstremuma dlya gladkikh zadach s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 25:5 (1985), 680–693 | MR | Zbl

[10] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR

[11] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl

[12] Izmailov A. F., Solodov M. V., “Error bounds for 2-regular mappings with Lipschitzian derivatives and their applications”, Math. Program., 89:3 (2001), 413–435 | DOI | MR | Zbl

[13] Avakov E. P., Arutyunov A. B., Izmailov A. F., “Neobkhodimye usloviya ekstremuma v zadache matematicheskogo programmirovaniya”, Tr. Matem. in-ta RAN, 256, M., 2007, 6–30 | MR | Zbl