Partial regularization method for nonmonotone variational inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 355-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A variational inequality with a nonmonotone mapping is considered in a Euclidean space. A regularization method with respect to some of the variables is proposed for its solution. The convergence of the method is proved under a coercivity-type condition. The method is applied to an implicit optimization problem with an arbitrary perturbing mapping. The solution technique combines partial regularization and the dual descent method.
@article{ZVMMF_2008_48_3_a0,
     author = {D. A. Dyabilkin and I. V. Konnov},
     title = {Partial regularization method for nonmonotone variational inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {355--364},
     year = {2008},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a0/}
}
TY  - JOUR
AU  - D. A. Dyabilkin
AU  - I. V. Konnov
TI  - Partial regularization method for nonmonotone variational inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 355
EP  - 364
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a0/
LA  - ru
ID  - ZVMMF_2008_48_3_a0
ER  - 
%0 Journal Article
%A D. A. Dyabilkin
%A I. V. Konnov
%T Partial regularization method for nonmonotone variational inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 355-364
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a0/
%G ru
%F ZVMMF_2008_48_3_a0
D. A. Dyabilkin; I. V. Konnov. Partial regularization method for nonmonotone variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 355-364. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a0/

[1] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva, Nauka, M., 1988 | MR

[2] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin, 2001 | MR

[3] Facchinei F., Pang J.-S., Finite-dimensional variational inequalities and complementarity problems, v. 2, Springer-Verlag, Berlin, 2003

[4] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[5] Browder F.E., “Existence and approximation of solutions of nonlinear variational inequalities”, Proc. Nat. Acad. Sci. USA, 56:4 (1966), 1080–1086 | DOI | MR | Zbl

[6] Konnov I. V., “O skhodimosti metoda regulyarizatsii dlya variatsionnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 568–575 | MR | Zbl

[7] Konnov I. V., “Partial regularization method for equilibrium problems”, J. Nonlinear Convex Analys., 3:3 (2005), 497–503 | MR | Zbl

[8] Konnov I. V., “Convex optimization problems with arbitrary risht-hand side perturbations”, Optimization, 54:2 (2005), 131–147 | DOI | MR | Zbl

[9] Bulavskii B. A., “Kvazilineinoe programmirovanie i vektornaya optimizatsiya”, Dokl. AN SSSR, 257:4 (1981), 788–791 | MR

[10] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR

[11] Konnov I. V., “Metody dvoistvennogo tipa dlya obratnykh zadach optimizatsii i ikh obobschenii”, Dokl. RAN, 395:6 (2004), 740–742 | MR | Zbl

[12] Konnov I. V., “Dual approach for a class of implicit convex optimization problems”, Math. Meth. Operat. Res., 60:1 (2004), 87–99 | MR | Zbl

[13] Patriksson M., Nonlinear programming and variational inequality problems: a unified approach, Kluwer Acad. Publ., Dordrecht etc., 1999 | MR | Zbl

[14] Hogan W. W., “Point-to-set maps in mathematical programming”, SIAM Rev., 15:3 (1973), 591–603 | DOI | MR | Zbl