Initial-boundary value problem and integrodifferential equations of electrodynamics for an inhomogeneous conductive body
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 288-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial-boundary value problem of determining the electromagnetic field in an inhomogeneous conducting sample and the surrounding external medium is solved under certain assumptions on the sample, the external medium, and the external current density. The existence of a classical solution to this problem is proved. The electromagnetic field under small variations in the sample's electric conductivity is computed by applying perturbation theory.
@article{ZVMMF_2008_48_2_a9,
     author = {V. V. Dyakin and S. V. Marvin},
     title = {Initial-boundary value problem and integrodifferential equations of electrodynamics for an inhomogeneous conductive body},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {288--296},
     year = {2008},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a9/}
}
TY  - JOUR
AU  - V. V. Dyakin
AU  - S. V. Marvin
TI  - Initial-boundary value problem and integrodifferential equations of electrodynamics for an inhomogeneous conductive body
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 288
EP  - 296
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a9/
LA  - ru
ID  - ZVMMF_2008_48_2_a9
ER  - 
%0 Journal Article
%A V. V. Dyakin
%A S. V. Marvin
%T Initial-boundary value problem and integrodifferential equations of electrodynamics for an inhomogeneous conductive body
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 288-296
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a9/
%G ru
%F ZVMMF_2008_48_2_a9
V. V. Dyakin; S. V. Marvin. Initial-boundary value problem and integrodifferential equations of electrodynamics for an inhomogeneous conductive body. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 288-296. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a9/

[1] Dyakin V. V., Raevskii V. Ya., “K issledovaniyu sistemy integrodifferentsialnykh uravnenii elektrodinamiki s postoyannymi parametrami sred”, Zh. vychisl. matem. i matem. fiz., 41:9 (2001), 1416–1421 | MR | Zbl

[2] Khizhnyak H. A., “Funktsiya Grina uravnenii Maksvella dlya neodnorodnykh sred”, Zh. tekhn. fiz., 28:7 (1958), 1592–1610

[3] Khizhnyak H. A., Integralnye uravneniya klassicheskoi elektrodinamiki, Nauk. Dumka, Kiïv, 1966

[4] Samokhin A. B., “Iteratsionnyi metod dlya integralnykh uravnenii zadach rasseyaniya na trekhmernom prozrachnom tele”, Differents. ur-niya, 30:12 (1994), 2162–2174 | MR | Zbl

[5] Samokhin A. B., “Difraktsiya elektromagnitnykh voln na lokalno-neodnorodnom tele i singulyarnye integralnye uravneniya”, Zh. vychisl. matem. i matem. fiz., 32:5 (1992), 772–787 | MR | Zbl

[6] Samokhin A. B., “Issledovanie zadach difraktsii elektromagnitnykh voln v lokalno-neodnorodnykh sredakh”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 107–121 | MR

[7] Ilinskii A. C., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[8] Ramm A. G., Werner P., “On the limit amplitude principle for a layer”, J. Reine und Angew. Math., 360 (1985), 19–46 | MR | Zbl

[9] Werner P., “Ein Resonanzphaenomen in der Teorie akustischer und electromagnetischer Wellen”, Z. Angew. Math. und Mech., 67:4 (1987), 43–54 | DOI | Zbl

[10] Bogolyubov A. H., Malykh M. D., Panin A. A., “Vremennaya asimptotika polya, vozbuzhdaemogo v volnovode garmonicheskim tokom”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2219–2231 | MR | Zbl

[11] Dyakin V. V., Raevskii V. Ya., “Pryamaya i obratnaya zadacha klassicheskoi elektrodinamiki”, Defektoskopiya, 1996, no. 10, 31–39

[12] Marvin C. B., Dyakin V. V., “O suschestvovanii i edinstvennosti resheniya nachalno-kraevoi zadachi elektrodinamiki”, Vestn. UGTU-UPI. Ekaterinburg, 69:17 (2005), 295–302

[13] Mikhlin S. G., Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959 | MR

[14] Smirnov V. I., Kurs vysshei matematiki, v. 5, Fizmatgiz, M., 1959 | MR