Application of wavelet transforms to the solution of boundary value problems for linear parabolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 264-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method based on wavelet transforms is proposed for finding weak solutions to initial-boundary value problems for linear parabolic equations with discontinuous coefficients and inexact data. In the framework of multiresolution analysis, the general scheme for finite-dimensional approximation in the regularization method is combined with the discrepancy principle. An error estimate is obtained for the stable approximate solution obtained by solving a set of linear algebraic equations for the wavelet coefficients of the desired solution.
@article{ZVMMF_2008_48_2_a7,
     author = {E. M. Abbasov and O. A. Dyshin and B. A. Suleimanov},
     title = {Application of wavelet transforms to the solution of boundary value problems for linear parabolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {264--281},
     year = {2008},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a7/}
}
TY  - JOUR
AU  - E. M. Abbasov
AU  - O. A. Dyshin
AU  - B. A. Suleimanov
TI  - Application of wavelet transforms to the solution of boundary value problems for linear parabolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 264
EP  - 281
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a7/
LA  - ru
ID  - ZVMMF_2008_48_2_a7
ER  - 
%0 Journal Article
%A E. M. Abbasov
%A O. A. Dyshin
%A B. A. Suleimanov
%T Application of wavelet transforms to the solution of boundary value problems for linear parabolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 264-281
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a7/
%G ru
%F ZVMMF_2008_48_2_a7
E. M. Abbasov; O. A. Dyshin; B. A. Suleimanov. Application of wavelet transforms to the solution of boundary value problems for linear parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 264-281. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a7/

[1] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[2] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[3] Ladyzhenskaya O. A., Uraltseva H. H., “Obzor rezultatov po razreshimosti kraevykh zadach dlya ravnomerno ellipticheskikh i parabolicheskikh uravnenii vtorogo poryadka, imeyuschikh neorganichennye osobennosti”, Uspekhi matem. nauk, 41:5(251) (1986), 59–83 | MR | Zbl

[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, SO AN SSSR, Novosibirsk, 1962

[6] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[7] Morozov V. A., “O printsipe nevyazki pri reshenii operatornykh uravnenii metodom regulyarizatsii”, Zh. vychisl. matem. i matem. fiz., 8:2 (1968), 295–309 | Zbl

[8] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[9] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[10] Novikov I. Ya., Stechkin S. B., “Osnovy teorii vspleskov”, Uspekhi matem. nauk, 53:6 (1998), 53–128 | MR | Zbl

[11] Vladimirov B. C., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[12] Dremin I. M., Ivanov O. V., Nechitailo B. A., “Veivlety i ikh ispolzovanie”, Uspekhi fiz. nauk, 171:5 (2001), 465–501 | DOI

[13] Dobeshi I., Desyat lektsii po veivletam, NITs Regulyarnaya i khaotich. dinamika, M., Izhevsk, 2004

[14] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965 | MR

[15] Iosida K., Funktsionalnyi analiz, Mir, M., 1965 | MR

[16] Kakhaner D., Mouler K., Nesh S., Chislennye metody i programmnoe obespechenie, Mir, M., 1998

[17] Starostenko V. I., Ustoichivye chislennye metody v zadachakh gravimetrii, Nauk. dumka, Kiev, 1978 | MR | Zbl

[18] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[19] Marchuk G. I., Agashkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[20] Beiko I. V., Bublik B. N., Zinko P. H., Metody i algoritmy resheniya zadach optimizatsii, Vischa shkola, Kiev, 1983

[21] Gantmakher F. R., Teoriya matrits, Gostekhteorizdat, M., 1953

[22] Chui K., Vvedenie v veivlety, Mir, M., 2001