@article{ZVMMF_2008_48_2_a3,
author = {N. N. Osipov},
title = {Construction of lattice rules with a~trigonometric $d$-property on the basis of extreme lattices},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {212--219},
year = {2008},
volume = {48},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a3/}
}
TY - JOUR AU - N. N. Osipov TI - Construction of lattice rules with a trigonometric $d$-property on the basis of extreme lattices JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 212 EP - 219 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a3/ LA - ru ID - ZVMMF_2008_48_2_a3 ER -
%0 Journal Article %A N. N. Osipov %T Construction of lattice rules with a trigonometric $d$-property on the basis of extreme lattices %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 212-219 %V 48 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a3/ %G ru %F ZVMMF_2008_48_2_a3
N. N. Osipov. Construction of lattice rules with a trigonometric $d$-property on the basis of extreme lattices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 212-219. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a3/
[1] Noskov M. V., “Kubaturnye formuly dlya priblizhennogo integrirovaniya funktsii trekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 28:10 (1988), 1583–1586 | MR
[2] Noskov M. V., Schmid H. J., “Kubaturnye formuly vysokoi trigonometricheskoi tochnosti”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 786–795 | MR | Zbl
[3] Osipov H. H., “Nailuchshie po chislu uzlov serii reshetchatykh kubaturnykh formul, tochnykh na trigonometricheskikh mnogochlenakh trekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 45:2 (2005), 212–223 | MR | Zbl
[4] Noskov M. V., Semenova A. R., “Kubaturnye formuly povyshennoi trigonometricheskoi tochnosti dlya periodicheskikh funktsii chetyrekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 5–11 | MR | Zbl
[5] Osipov H. H., Petrov A. B., “Postroenie serii reshetchatykh kubaturnykh formul, tochnykh na trigonometricheskikh mnogochlenakh chetyrekh peremennykh” (Krasnoyarsk, avgust 2003), Vychisl. tekhnologii, 9, Spets. vypusk: Izbr. dokl. VII Mezhdunar. seminara-soveschaniya “Kubaturnye f-ly i ikh prilozh.”, IVT SO RAN, Novosibirsk, 2004, 102–110
[6] Borovykh O. P., “Primery serii reshetchatykh kubaturnykh formul s trigonometricheskim $d(k)$-svoistvom v pyatimernom sluchae” (Ulan-Ude, avgust 2005), Vychisl. tekhnologii, 11, Spets. vypusk: Izbr. dokl. VIII Mezhdunar. seminara-soveschaniya “Kubaturnye f-ly i ikh prilozh.”, IVT SO RAN, Novosibirsk, 2006, 4–9
[7] Cools R., Lyness J. N., “Three- and for-dimensional $K$-optimal lattice rules of moderate trigonometric degree”, Math. Comput., 70:236 (2001), 1549–1567 | DOI | MR | Zbl
[8] Cools R., Covaert H., “Five- and six-dimensional lattice rules generated by structured matrices”, J. Complexity, 19:4 (2003), 715–729 | DOI | MR | Zbl
[9] Lyness J. N., Sorevik T., “Four-dimensional lattice rules generated by skew-circulant matrices”, Math. Comput., 73:245 (2004), 279–295 | MR | Zbl
[10] Noskov M. V., Petrov A. B., “Algoritm postroeniya odnogo klassa reshetchatykh kubaturnykh formul, tochnykh na trigonometricheskikh mnogochlenakh chetyrekh peremennykh”, Vychisl. tekhnologii, 10, Spets. vypusk, posvyaschennyi 50-letiyu Krasnoyarskogo ros. tekhn. un-ta, IVGSO RAN, Novosibirsk, 2005, 22–28
[11] Sloan I. H., Joe S., Lattice methods for multiple integration, Univ. Press, Oxford, 1994 | MR | Zbl
[12] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR
[13] Minkowski H., “Dichteste gitterförmice Lagerung kongruenter Körper”, Nachr. Köning Ges. Wiss. Göttingen, 1904, 311–355 | Zbl
[14] Osipov H. H., “Primery ekstremalnykh reshetok dlya giperoktaedra v $\mathbb R^5$ i $\mathbb R^6$”, Vestn. Krasnoyarskogo gos. un-ta. Fiz.-matem. nauki, 2005, no. 1, 93–96