Construction of lattice rules with a trigonometric $d$-property on the basis of extreme lattices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 212-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lattice rules with the trigonometric $d$-property that are optimal with respect to the number of points are constructed for the approximation of integrals over an $n$-dimensional unit cube. An extreme lattice for a hyperoctahedron at $n=4$ is used to construct lattice rules with the trigonometric $d$-property and the number of points $$ 0.80822\ldots\cdot\Delta^4(1+o(1)),\quad\Delta\to\infty $$ ($d=2\Delta-1\ge3$ is an arbitrary odd number). With few exceptions, the resulting lattice rules have the highest previously known effectiveness factor.
@article{ZVMMF_2008_48_2_a3,
     author = {N. N. Osipov},
     title = {Construction of lattice rules with a~trigonometric $d$-property on the basis of extreme lattices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {212--219},
     year = {2008},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a3/}
}
TY  - JOUR
AU  - N. N. Osipov
TI  - Construction of lattice rules with a trigonometric $d$-property on the basis of extreme lattices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 212
EP  - 219
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a3/
LA  - ru
ID  - ZVMMF_2008_48_2_a3
ER  - 
%0 Journal Article
%A N. N. Osipov
%T Construction of lattice rules with a trigonometric $d$-property on the basis of extreme lattices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 212-219
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a3/
%G ru
%F ZVMMF_2008_48_2_a3
N. N. Osipov. Construction of lattice rules with a trigonometric $d$-property on the basis of extreme lattices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 212-219. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a3/

[1] Noskov M. V., “Kubaturnye formuly dlya priblizhennogo integrirovaniya funktsii trekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 28:10 (1988), 1583–1586 | MR

[2] Noskov M. V., Schmid H. J., “Kubaturnye formuly vysokoi trigonometricheskoi tochnosti”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 786–795 | MR | Zbl

[3] Osipov H. H., “Nailuchshie po chislu uzlov serii reshetchatykh kubaturnykh formul, tochnykh na trigonometricheskikh mnogochlenakh trekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 45:2 (2005), 212–223 | MR | Zbl

[4] Noskov M. V., Semenova A. R., “Kubaturnye formuly povyshennoi trigonometricheskoi tochnosti dlya periodicheskikh funktsii chetyrekh peremennykh”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 5–11 | MR | Zbl

[5] Osipov H. H., Petrov A. B., “Postroenie serii reshetchatykh kubaturnykh formul, tochnykh na trigonometricheskikh mnogochlenakh chetyrekh peremennykh” (Krasnoyarsk, avgust 2003), Vychisl. tekhnologii, 9, Spets. vypusk: Izbr. dokl. VII Mezhdunar. seminara-soveschaniya “Kubaturnye f-ly i ikh prilozh.”, IVT SO RAN, Novosibirsk, 2004, 102–110

[6] Borovykh O. P., “Primery serii reshetchatykh kubaturnykh formul s trigonometricheskim $d(k)$-svoistvom v pyatimernom sluchae” (Ulan-Ude, avgust 2005), Vychisl. tekhnologii, 11, Spets. vypusk: Izbr. dokl. VIII Mezhdunar. seminara-soveschaniya “Kubaturnye f-ly i ikh prilozh.”, IVT SO RAN, Novosibirsk, 2006, 4–9

[7] Cools R., Lyness J. N., “Three- and for-dimensional $K$-optimal lattice rules of moderate trigonometric degree”, Math. Comput., 70:236 (2001), 1549–1567 | DOI | MR | Zbl

[8] Cools R., Covaert H., “Five- and six-dimensional lattice rules generated by structured matrices”, J. Complexity, 19:4 (2003), 715–729 | DOI | MR | Zbl

[9] Lyness J. N., Sorevik T., “Four-dimensional lattice rules generated by skew-circulant matrices”, Math. Comput., 73:245 (2004), 279–295 | MR | Zbl

[10] Noskov M. V., Petrov A. B., “Algoritm postroeniya odnogo klassa reshetchatykh kubaturnykh formul, tochnykh na trigonometricheskikh mnogochlenakh chetyrekh peremennykh”, Vychisl. tekhnologii, 10, Spets. vypusk, posvyaschennyi 50-letiyu Krasnoyarskogo ros. tekhn. un-ta, IVGSO RAN, Novosibirsk, 2005, 22–28

[11] Sloan I. H., Joe S., Lattice methods for multiple integration, Univ. Press, Oxford, 1994 | MR | Zbl

[12] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[13] Minkowski H., “Dichteste gitterförmice Lagerung kongruenter Körper”, Nachr. Köning Ges. Wiss. Göttingen, 1904, 311–355 | Zbl

[14] Osipov H. H., “Primery ekstremalnykh reshetok dlya giperoktaedra v $\mathbb R^5$ i $\mathbb R^6$”, Vestn. Krasnoyarskogo gos. un-ta. Fiz.-matem. nauki, 2005, no. 1, 93–96