Algorithms for finding logical regularities in pattern recognition
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 329-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three algorithms for finding logical regularities of classes in the precedent-based recognition problem are proposed. Logical regularities of classes are defined as conjunctions of special oneplace predicates that determine the membership of a value of a feature in a certain interval of the real axis. The conjunctions are true on as large subsets of reference objects of a certain class as possible. The problem of finding logical regularities is formulated as a special integer programming problem. Relaxation, genetic, and combinatorial algorithms are proposed for solving this problem. Comparison results for these algorithms using model and real-time problems are presented. Comparison results for various estimate evaluation recognition algorithms that use logical regularities of classes in voting procedures are also presented.
@article{ZVMMF_2008_48_2_a13,
     author = {N. V. Kovshov and V. L. Moiseev and V. V. Ryazanov},
     title = {Algorithms for finding logical regularities in pattern recognition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {329--344},
     year = {2008},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a13/}
}
TY  - JOUR
AU  - N. V. Kovshov
AU  - V. L. Moiseev
AU  - V. V. Ryazanov
TI  - Algorithms for finding logical regularities in pattern recognition
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 329
EP  - 344
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a13/
LA  - ru
ID  - ZVMMF_2008_48_2_a13
ER  - 
%0 Journal Article
%A N. V. Kovshov
%A V. L. Moiseev
%A V. V. Ryazanov
%T Algorithms for finding logical regularities in pattern recognition
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 329-344
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a13/
%G ru
%F ZVMMF_2008_48_2_a13
N. V. Kovshov; V. L. Moiseev; V. V. Ryazanov. Algorithms for finding logical regularities in pattern recognition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 329-344. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a13/

[1] Ryazanov V. V., “Logicheskie zakonomernosti v zadachakh raspoznavaniya (parametricheskii podkhod)”, Zh. vychisl. matem. i matem. fiz., 47:10 (2007), 1793–1808 | MR

[2] Zhuravlev Yu. I., Nikiforov V. V., “Algoritmy raspoznavaniya, osnovannye na vychislenii otsenok”, Kibernetika, 1971, no. 3, 1–11 | Zbl

[3] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33, Nauka, M., 1978, 5–68

[4] Baskakova L. V., Zhuravlev Yu. I., “Model raspoznayuschikh algoritmov s predstavitelnymi naborami i sistemami opornykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 21:5 (1981), 1264–1275 | MR | Zbl

[5] Zhuravlev Yu. I., Ryazanov V. V., Senko O. V., Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya, FAZIS, M., 2006

[6] Obukhov A. C., Ryazanov V. V., “Primenenie relaksatsionnykh algoritmov pri optimizatsii lineinykh reshayuschikh pravil”, Dokl. X Vseros. konf. “Matem. metody raspoznavaniya obrazov (MMRO-10)”, M., 2001, 102–104

[7] Holland J. H., Adaptation in natural and artificial systems, Univ. Michigan Press, Ann. Arbor, MI, 1975 | MR

[8] Harrison D., Rubinfeld D. L., “Hedonic prices and the demand for clean air”, J. Environ. Economics Management, 5 (1978), 81–102 | DOI | Zbl

[9] Sigillito V. G., Wing S. P., Hutton L. V., Baker K. B., “Classification of radar returns from the ionosphere using neural networks”, Johns Hopkins APL Techn. Digest, 10 (1989), 262–266