Optimal control problem for steady-state equations of acoustic wave diffraction
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 297-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An optimal control problem is considered for the steady-state equations of acoustic wave diffraction caused by a three-dimensional inclusion in an unbounded homogeneous medium. The task is to minimize the $L^2$-deviation of the pressure field inside the inclusion from a certain prescribed value due to changing the field sources in the external medium. The solvability of the problem is proved. A solution algorithm is proposed, and its convergence is proved.
@article{ZVMMF_2008_48_2_a10,
     author = {L. V. Illarionova},
     title = {Optimal control problem for steady-state equations of acoustic wave diffraction},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {297--308},
     year = {2008},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a10/}
}
TY  - JOUR
AU  - L. V. Illarionova
TI  - Optimal control problem for steady-state equations of acoustic wave diffraction
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 297
EP  - 308
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a10/
LA  - ru
ID  - ZVMMF_2008_48_2_a10
ER  - 
%0 Journal Article
%A L. V. Illarionova
%T Optimal control problem for steady-state equations of acoustic wave diffraction
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 297-308
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a10/
%G ru
%F ZVMMF_2008_48_2_a10
L. V. Illarionova. Optimal control problem for steady-state equations of acoustic wave diffraction. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 2, pp. 297-308. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_2_a10/

[1] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[2] Ilinskii A. C., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[3] Smagin S. I., Integralnye uravneniya zadach difraktsii, Dalnauka, Vladivostok, 1995

[4] Smagin S. I., “Ob odnoi sisteme integralnykh uravnenii teorii difraktsii”, Differents. ur-niya, 26:8 (1990), 1432–1437 | MR

[5] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[6] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[7] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[8] Kupradze V. D., Gegeliya T. G., Basheleishvili M. O., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR

[9] Ershov N. E., Smagin S. I., “Priblizhennoe reshenie prostranstvennykh zadach akustiki i uprugosti metodom potentsialov”, Matem. modeli, metody i prilozheniya, Izd-vo KhGPU, Khabarovsk, 2002, 45–115

[10] Ershov N. E., Smagin S. I., “Reshenie prostranstvennykh zadach akustiki i uprugosti metodom potentsialov”, Differents. ur-niya, 29:9 (1993), 1517–1525 | MR | Zbl

[11] Blokhina L. V., Ershov N. E., “Chislennoe reshenie integralnykh uravnenii prostranstvennoi zadachi rasprostraneniya i difraktsii akusticheskikh voln”, Dokl. na mezhdunar. konfer. po vychisl. matem. (Novosibirsk, 2004), IM SO RAN, Novosibirsk, 2004, 407–410

[12] Kirsch A., “A weak bang-bang principle for the control of an exterior Robin problem”, Appl. Analys., 13 (1982), 65–75 | DOI | MR | Zbl

[13] Kress R., Rundell W., “Inverse scattering for shape and impedance”, Inverse Problem, 17 (2001), 1075–1085 | DOI | MR | Zbl

[14] Angell T. S., Kirsch A., Optimization methods in electromagnetic radiation, Springer, Berlin etc., 2004 | MR | Zbl

[15] Yanzhao Cao. Stanescu D., “Shape optimization for noise radiation problems”, Comput. and Math. with Appl., 44 (2002), 1527–1537 | DOI | MR | Zbl

[16] Habbal A., “Nonsmooth shape optimization applied to linear acoustic”, SIAM J. Optimizat., 8:4 (1998), 989–1006 | DOI | MR | Zbl

[17] Goryunov A. A., Saskovets A. B., Obratnye zadachi rasseyaniya v akustike, Izd-vo MGU, M., 1989

[18] Savenkova A. C., “Multiplikativnoe upravlenie v zadache rasseyaniya dlya uravneniya Gelmgoltsa”, Sibirskii zhurnal industr. matem., 10:1 (2007), 128–139 | MR

[19] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl