The Korteweg–de Vries equation in a cylindrical pipe
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 146-153

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of nonlinear wave propagation in a pipeline is constructed. The Korteweg–de Vries equation is derived by determining asymptotic solutions and changing variables. A particular solution to the model equations is found that has the fluid velocity function in the form of a solitary wave. Thus, the class of nonlinear fluid dynamics problems described by the KdV equation is expanded.
@article{ZVMMF_2008_48_1_a9,
     author = {V. A. Rukavishnikov and O. P. Tkachenko},
     title = {The {Korteweg{\textendash}de} {Vries} equation in a~cylindrical pipe},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {146--153},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a9/}
}
TY  - JOUR
AU  - V. A. Rukavishnikov
AU  - O. P. Tkachenko
TI  - The Korteweg–de Vries equation in a cylindrical pipe
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 146
EP  - 153
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a9/
LA  - ru
ID  - ZVMMF_2008_48_1_a9
ER  - 
%0 Journal Article
%A V. A. Rukavishnikov
%A O. P. Tkachenko
%T The Korteweg–de Vries equation in a cylindrical pipe
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 146-153
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a9/
%G ru
%F ZVMMF_2008_48_1_a9
V. A. Rukavishnikov; O. P. Tkachenko. The Korteweg–de Vries equation in a cylindrical pipe. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 146-153. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a9/