The Korteweg–de Vries equation in a cylindrical pipe
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 146-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of nonlinear wave propagation in a pipeline is constructed. The Korteweg–de Vries equation is derived by determining asymptotic solutions and changing variables. A particular solution to the model equations is found that has the fluid velocity function in the form of a solitary wave. Thus, the class of nonlinear fluid dynamics problems described by the KdV equation is expanded.
@article{ZVMMF_2008_48_1_a9,
     author = {V. A. Rukavishnikov and O. P. Tkachenko},
     title = {The {Korteweg{\textendash}de} {Vries} equation in a~cylindrical pipe},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {146--153},
     year = {2008},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a9/}
}
TY  - JOUR
AU  - V. A. Rukavishnikov
AU  - O. P. Tkachenko
TI  - The Korteweg–de Vries equation in a cylindrical pipe
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 146
EP  - 153
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a9/
LA  - ru
ID  - ZVMMF_2008_48_1_a9
ER  - 
%0 Journal Article
%A V. A. Rukavishnikov
%A O. P. Tkachenko
%T The Korteweg–de Vries equation in a cylindrical pipe
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 146-153
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a9/
%G ru
%F ZVMMF_2008_48_1_a9
V. A. Rukavishnikov; O. P. Tkachenko. The Korteweg–de Vries equation in a cylindrical pipe. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 146-153. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a9/

[1] Zhukovskii N. E., O gidravlicheskom udare v vodoprovodnykh trubakh, Gostekhteorizdat, M., L., 1949

[2] Budak B. M., Samarskii A. A., Tikhonov A. N., Sbornik zadach po matematicheskoi fizike, Nauka, M., 1980 | MR | Zbl

[3] Parnyi I. A., Neustanovivsheesya dvizhenie realnoi zhidkosti v trubakh, Nedra, M., 1975

[4] Klochkov B. N., Kuznetsova E. A., “Nelineinye rezhimy izmeneniya formy uprugoi trubki s potokom zhidkosti v nei”, Izv. RAN. Mekhan. zhidkosti i gaza, 2000, no. 4, 49–54

[5] Nigmatulin R. I., Dinamika mnogofaznykh sred, v. II, Nauka, M., 1987

[6] Rukavishnikov V. A., Tkachenko O. P., “Chislennoe i asimptoticheskoe reshenie uravnenii rasprostraneniya gidrouprugikh kolebanii v izognutom truboprovode”, Prikl. mekhan. i tekhn. fiz., 41:6 (2000), 161–169 | MR | Zbl

[7] Rukavishnikov V. A., Tkachenko O. P., “Nelineinye uravneniya dvizheniya rastyazhimogo podzemnogo truboprovoda: vyvod i chislennoe issledovanie”, Prikl. mekhan. i tekhn. fiz., 44:4 (2003), 144–150 | Zbl

[8] Tkachenko O. P., “Asimptoticheskoe predstavlenie i chislennyi raschet konechnykh deformatsii krivolineinogo podzemnogo truboprovoda”, Vychisl. tekhnologii, 11:1 (2006), 95–105

[9] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR

[10] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[11] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Drofa, M., 2003

[12] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, Lan, SPb., 2004

[13] Bronshtein I. N., Semendyaev K. A., Spravochnik po matematike dlya inzhenerov i uchaschikhsya vuzov, Nauka, M., 1980

[14] Ilyamov M. A., Vvedenie v nelineinuyu gidrouprugost, Nedra, M., 1991

[15] M. Abramovich, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i tablitsami, Nauka, M., 1979 | MR

[16] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[17] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku: ot mayatnika do turbulentnosti khaosa, Nauka, M., 1988 | MR