Asymptotic theory of perturbations inducing a pressure gradient in a transonic flat-plate boundary layer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 127-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The role of asymptotic approaches to the study of viscous-inviscid interaction mechanisms in transonic outer flows is discussed. It is noted that there are several versions of multideck asymptotic constructions describing the self-induced pressure effect in transonic boundary layers. The asymptotic theory is used to uncover the internal structure of fluctuation fields, to treat instability-generating processes, and to analyze the behavioral features of linear and nonlinear wave fluctuations. Additionally, the properties of the eigenspectrum are described.
@article{ZVMMF_2008_48_1_a8,
     author = {K. V. Guzaeva and V. I. Zhuk},
     title = {Asymptotic theory of perturbations inducing a pressure gradient in a~transonic flat-plate boundary layer},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {127--145},
     year = {2008},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a8/}
}
TY  - JOUR
AU  - K. V. Guzaeva
AU  - V. I. Zhuk
TI  - Asymptotic theory of perturbations inducing a pressure gradient in a transonic flat-plate boundary layer
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 127
EP  - 145
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a8/
LA  - ru
ID  - ZVMMF_2008_48_1_a8
ER  - 
%0 Journal Article
%A K. V. Guzaeva
%A V. I. Zhuk
%T Asymptotic theory of perturbations inducing a pressure gradient in a transonic flat-plate boundary layer
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 127-145
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a8/
%G ru
%F ZVMMF_2008_48_1_a8
K. V. Guzaeva; V. I. Zhuk. Asymptotic theory of perturbations inducing a pressure gradient in a transonic flat-plate boundary layer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 127-145. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a8/

[1] Neiland V. Ya., “K teorii otryva laminarnogo pogranichnogo sloya v sverkhzvukovom potoke”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1969, no. 4, 53–57 | Zbl

[2] Stewartson K., Williams P. C., “Self-induced separation”, Proc. Roy. Soc. London. Ser. A, 312:1509 (1969), 181–206 | DOI | Zbl

[3] Messiter A. F., “Boundary layer flow near the trailing edge of a flat plate”, SIAM J. Appl. Math., 18:6 (1970), 241–257 | DOI | Zbl

[4] Sychev B. B., “O laminarnom otryve”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1972, no. 3, 47–59 | Zbl

[5] Sychev V. V., Ruban A. I., Sychev Vik. V., Korolev G. L., Asimptoticheskaya teoriya otryvnykh techenii, Nauka, M., 1987

[6] Messiter A. F., Feo A., Melnik R. F., “Shoch-wave strength for separation of a laminar boundary layer at transonic speeds”, AIAA Journal, 9:6 (1971), 1197–1198 | DOI

[7] Ryzhov O. S., “O nestatsionarnom pogranichnom sloe s samoindutsirovannym davleniem pri okolozvukovykh skorostyakh vneshnego potoka”, Dokl. AN SSSR, 236:5 (1977), 1091–1094 | MR | Zbl

[8] Stewartson K., “Multistructured boundary layers on flat plates and related bodies”, Adv. Appl. Mech., 14 (1974), 145–239 | DOI

[9] Ryzhov O. C., Savenkov I. V., “Ob ustoichivosti pogranichnogo sloya pri transzvukovykh skorostyakh vneshnego potoka”, Prikl. mekhan. i tekhn. fiz., 1990, no. 2, 65–71

[10] Zhuk V. I., “Nelineinye vozmuscheniya, indutsiruyuschie sobstvennyi gradient davleniya v pogranichnom sloe na plastine v transzvukovom potoke”, Prikl. matem. i mekhan., 57:5 (1993), 68–78 | MR | Zbl

[11] Smith F. T., “On the nonparallel flow stability of the Blasius boundary layer”, Proc. Roy. Soc. London. Ser. A, 366:1724 (1979), 91–109 | DOI | Zbl

[12] Zhuk V. I., Ryzhov O. S., “Svobodnoe vzaimodeistvie i ustoichivost pogranichnogo sloya v neszhimaemoi zhidkosti”, Dokl. AN SSSR, 253:6 (1980), 1326–1329 | MR | Zbl

[13] Bogdanov A. N., “Vysshie priblizheniya transzvukovogo razlozheniya v zadachakh nestatsionarnykh transzvukovykh techenii”, Prikl. matem. i mekhan., 61:6 (1997), 798–811 | MR | Zbl

[14] Zhuk V. I., Ryzhov O. S., “O lokalno-nevyazkikh vozmuscheniyakh v pogranichnom sloe s samoindutsirovannym davleniem”, Dokl. AN SSSR, 263:1 (1982), 56–59 | MR | Zbl

[15] Smith F. T., Burggraf O. R., “On the development of large-sides short-scaled disturbaces in boundary layers”, Proc. Roy. Soc. London. Ser. A, 399:1816 (1985), 25–55 | DOI | Zbl

[16] Lin C. C., Reissner E., Tsien H. S., “On two-dimensional non-steady motion of a slender body in a compressible fluid”, J. Math. and Phys., 27:3 (1948), 220–231 | MR | Zbl

[17] Koul Dzh., Kuk L., Transzvukovaya aerodinamika, Mir, M., 1989

[18] Van Dyke M. D., Perturbation methods in fluid mechanics, Acad. Press, New York, 1964 | MR

[19] Mails Dzh. U., Potentsialnaya teoriya neustanovivshikhsya sverkhzvukovykh techenii, Fizmatgiz, M., 1963

[20] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[21] Zhuk V. I., “Asimptotika verkhnei vetvi neitralnoi krivoi pri do- i transzvukovykh skorostyakh vneshnego potoka”, Vychisl. matem. i matem. fiz., 31:11 (1991), 1716–1730 | MR

[22] Zhuk V. I., Volny Tollmina–Shlikhtinga i solitony, Nauka, M., 2001

[23] Abramovits M., Stigan I., Spravochnik no spetsialnym funktsiyam, Nauka, M., 1979 | MR

[24] Zhuk V. I., “Ob asimptotike reshenii uravneniya Orra–Zommerfelda v oblastyakh, primykayuschikh k dvum vetvyam neitralnoi krivoi”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1984, no. 4, 3–11 | Zbl

[25] Ryzhov O. S., Terent'ev E. D., “O perekhodnom rezhime, kharakterizuyuschem zapusk vibratora v dozvukovom pogranichnom sloe na plastinke”, Prikl. matem. i mekhan., 50:6 (1986), 974–986 | Zbl