Asymptotic theory of perturbations inducing a pressure gradient in a transonic flat-plate boundary layer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 127-145
Voir la notice de l'article provenant de la source Math-Net.Ru
The role of asymptotic approaches to the study of viscous-inviscid interaction mechanisms in transonic outer flows is discussed. It is noted that there are several versions of multideck asymptotic constructions describing the self-induced pressure effect in transonic boundary layers. The asymptotic theory is used to uncover the internal structure of fluctuation fields, to treat instability-generating processes, and to analyze the behavioral features of linear and nonlinear wave fluctuations. Additionally, the properties of the eigenspectrum are described.
@article{ZVMMF_2008_48_1_a8,
author = {K. V. Guzaeva and V. I. Zhuk},
title = {Asymptotic theory of perturbations inducing a pressure gradient in a~transonic flat-plate boundary layer},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {127--145},
publisher = {mathdoc},
volume = {48},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a8/}
}
TY - JOUR AU - K. V. Guzaeva AU - V. I. Zhuk TI - Asymptotic theory of perturbations inducing a pressure gradient in a transonic flat-plate boundary layer JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 127 EP - 145 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a8/ LA - ru ID - ZVMMF_2008_48_1_a8 ER -
%0 Journal Article %A K. V. Guzaeva %A V. I. Zhuk %T Asymptotic theory of perturbations inducing a pressure gradient in a transonic flat-plate boundary layer %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 127-145 %V 48 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a8/ %G ru %F ZVMMF_2008_48_1_a8
K. V. Guzaeva; V. I. Zhuk. Asymptotic theory of perturbations inducing a pressure gradient in a transonic flat-plate boundary layer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 127-145. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a8/