Inverse coefficient problem for a wave equation in a bounded domain
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 115-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear inverse problem for a wave equation is investigated in a three-dimensional bounded domain subject to the Dirichlet boundary condition. Given a family of solutions to the equation defined on a closed surface within the original domain, it is required to reconstruct the coefficient determining the velocity of sound in the medium. The solutions used for this purpose correspond to the acoustic medium perturbations localized in the neighborhood of a certain closed surface. The inverse problem is reduced to a linear integral equation of the first kind, and the uniqueness of the solution to this equation is established. Numerical results are presented.
@article{ZVMMF_2008_48_1_a7,
     author = {M. Yu. Kokurin and S. K. Paǐmerov},
     title = {Inverse coefficient problem for a~wave equation in a~bounded domain},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {115--126},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a7/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
AU  - S. K. Paǐmerov
TI  - Inverse coefficient problem for a wave equation in a bounded domain
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 115
EP  - 126
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a7/
LA  - ru
ID  - ZVMMF_2008_48_1_a7
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%A S. K. Paǐmerov
%T Inverse coefficient problem for a wave equation in a bounded domain
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 115-126
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a7/
%G ru
%F ZVMMF_2008_48_1_a7
M. Yu. Kokurin; S. K. Paǐmerov. Inverse coefficient problem for a wave equation in a bounded domain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 115-126. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a7/