Corner boundary layer in nonlinear singularly perturbed elliptic problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 62-79

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem in a rectangle is considered for the elliptic equation $\varepsilon^2\Delta u=F(u,x,y,\varepsilon)$, where $F(u,x,y,\varepsilon)$ is a nonlinear function of $u$. The method of corner boundary functions is applied to the problem. Assuming that the leading term of the corner part of the asymptotics exists, an asymptotic expansion of the solution is constructed and the remainder is estimated.
@article{ZVMMF_2008_48_1_a4,
     author = {I. V. Denisov},
     title = {Corner boundary layer in nonlinear singularly perturbed elliptic problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {62--79},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/}
}
TY  - JOUR
AU  - I. V. Denisov
TI  - Corner boundary layer in nonlinear singularly perturbed elliptic problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 62
EP  - 79
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/
LA  - ru
ID  - ZVMMF_2008_48_1_a4
ER  - 
%0 Journal Article
%A I. V. Denisov
%T Corner boundary layer in nonlinear singularly perturbed elliptic problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 62-79
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/
%G ru
%F ZVMMF_2008_48_1_a4
I. V. Denisov. Corner boundary layer in nonlinear singularly perturbed elliptic problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 62-79. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/