Corner boundary layer in nonlinear singularly perturbed elliptic problems
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 62-79
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The Dirichlet problem in a rectangle is considered for the elliptic equation $\varepsilon^2\Delta u=F(u,x,y,\varepsilon)$, where $F(u,x,y,\varepsilon)$ is a nonlinear function of $u$. The method of corner boundary functions is applied to the problem. Assuming that the leading term of the corner part of the asymptotics exists, an asymptotic expansion of the solution is constructed and the remainder is estimated.
            
            
            
          
        
      @article{ZVMMF_2008_48_1_a4,
     author = {I. V. Denisov},
     title = {Corner boundary layer in nonlinear singularly perturbed elliptic problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {62--79},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/}
}
                      
                      
                    TY - JOUR AU - I. V. Denisov TI - Corner boundary layer in nonlinear singularly perturbed elliptic problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 62 EP - 79 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/ LA - ru ID - ZVMMF_2008_48_1_a4 ER -
I. V. Denisov. Corner boundary layer in nonlinear singularly perturbed elliptic problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 62-79. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/
