Corner boundary layer in nonlinear singularly perturbed elliptic problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 62-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem in a rectangle is considered for the elliptic equation $\varepsilon^2\Delta u=F(u,x,y,\varepsilon)$, where $F(u,x,y,\varepsilon)$ is a nonlinear function of $u$. The method of corner boundary functions is applied to the problem. Assuming that the leading term of the corner part of the asymptotics exists, an asymptotic expansion of the solution is constructed and the remainder is estimated.
@article{ZVMMF_2008_48_1_a4,
     author = {I. V. Denisov},
     title = {Corner boundary layer in nonlinear singularly perturbed elliptic problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {62--79},
     year = {2008},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/}
}
TY  - JOUR
AU  - I. V. Denisov
TI  - Corner boundary layer in nonlinear singularly perturbed elliptic problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 62
EP  - 79
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/
LA  - ru
ID  - ZVMMF_2008_48_1_a4
ER  - 
%0 Journal Article
%A I. V. Denisov
%T Corner boundary layer in nonlinear singularly perturbed elliptic problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 62-79
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/
%G ru
%F ZVMMF_2008_48_1_a4
I. V. Denisov. Corner boundary layer in nonlinear singularly perturbed elliptic problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 62-79. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a4/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[2] Denisov I. V., “Kvazilineinye singulyarno vozmuschennye ellipticheskie uravneniya v pryamougolnike”, Zh. vychisl. matem. i matem. fiz., 35:11 (1995), 1666–1678 | MR | Zbl

[3] Denisov I. V., “Kraevaya zadacha dlya kvazilineinogo singulyarno vozmuschennogo parabolicheskogo uravneniya v pryamougolnike”, Zh. vychisl. matem. i matem. fiz., 36:10 (1996), 56–72 | MR | Zbl

[4] Denisov I. V., “Otsenka ostatochnogo chlena v asimptotike resheniya kraevoi zadachi”, Zh. vychisl. matem. i matem. fiz., 36:12 (1996), 64–67 | MR | Zbl

[5] Denisov I. V., “Pervaya kraevaya zadacha dlya lineinogo parabolicheskogo uravneniya v prostranstve $\mathbb R^{n+1}$”, Differents. ur-niya, 34:12 (1998), 1616–1623 | MR | Zbl

[6] Denisov I. V., “Zadacha nakhozhdeniya glavnogo chlena uglovoi chasti asimptotiki resheniya singulyarno vozmuschennogo ellipticheskogo uravneniya s nelineinostyu”, Zh. vychisl. matem. i matem. fiz., 39:5 (1999), 779–791 | MR | Zbl

[7] Denisov I. V., “Uglovoi pogransloi v nelineinykh singulyarno vozmuschennykh ellipticheskikh uravneniyakh”, Zh. vychisl. matem. i matem. fiz., 41:3 (2001), 390–406 | MR | Zbl

[8] Denisov I. V., “Uglovoi pogransloi v nemonotonnykh singulyarno vozmuschennykh kraevykh zadachakh s nelineinostyami”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1674–1692 | MR | Zbl

[9] Atann H., “On the existence of positive solutions of nonlinear elliptic boundary value problems”, Indiana Univ. Math. J., 21:2 (1971), 126–146 | MR

[10] Amann H., In nonlinear analysis, New York, 1978

[11] Sattinger D. H., “Monotone methods in nonlinear elliptic and parabolic boundary value problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1001 | DOI | MR

[12] Nefedov H. H., “Metod differentsialnykh neravenstv dlya nekotorykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. ur-niya, 31:4 (1995), 719–723 | MR