@article{ZVMMF_2008_48_1_a3,
author = {N. N. Nefedov and K. R. Schneider},
title = {On immediate-delayed exchange of stabilities and periodic forced canards},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {46--61},
year = {2008},
volume = {48},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a3/}
}
TY - JOUR AU - N. N. Nefedov AU - K. R. Schneider TI - On immediate-delayed exchange of stabilities and periodic forced canards JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 46 EP - 61 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a3/ LA - en ID - ZVMMF_2008_48_1_a3 ER -
%0 Journal Article %A N. N. Nefedov %A K. R. Schneider %T On immediate-delayed exchange of stabilities and periodic forced canards %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 46-61 %V 48 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a3/ %G en %F ZVMMF_2008_48_1_a3
N. N. Nefedov; K. R. Schneider. On immediate-delayed exchange of stabilities and periodic forced canards. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 46-61. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a3/
[1] Marsden J. E., “Qualitative methods in bifurcation theory”, Bull. Amer. Math. Soc., 84 (1978), 1125–1148 | DOI | MR | Zbl
[2] Ruelle D., Elements of differentiable dynamics and bifurcation theory, Bosten Acad. Press, Inc., 1989 | MR | Zbl
[3] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of qualitative theory in nonlinear dynamics, Part II, World Scient., Singapore, 2001 | MR | Zbl
[4] Benoît E. (ed.), Dynamic bifurcation, Lect. Not. Math., 1493, Springer, New York, 1991
[5] Lebovitz N. R., Schaar R. J., “Exchance of stabilities in autonomous systems”, Stud. Appl. Math., 54 (1975), 229–260 | MR | Zbl
[6] Arnold V. I., Afraimovich V. S., Il'yashenko Yu. S., Shil'nikov L. P., Theory of bifurcations dynamical systems, Encyclopedia of Math. Sci., 5, Springer, New York, 1994
[7] Butuzov V. F., Nefedov H. H., “Singulyarno vozmuschennaya kraevaya zadacha dlya uravneniya vtorogo poryadka v sluchae smeny ustoichivosti”, Matem. zametki, 63:3 (1998), 354–362 | MR | Zbl
[8] Butuzov V. F., Nefedov N. N., Schneider K. R., “Singularly perturbed boundary value problems in case of exchance of stabilities”, J. Math. Analys. and Appl., 229 (1999), 543–562 | DOI | MR | Zbl
[9] Butuzov V. F., Nefedov H. H., Shnaider K. P., “Differentsialnye uravneniya. Singulyarnye vozmuscheniya”, Itogi nauki i tekhn. Ser. sovrem. matem. i ee prilozh. Tematich. obzory, 109, VINITI, M., 2003, 1–144
[10] Butiizov V. F., Nefedov N. N., Schneider K. R., “Singularly perturbed reaction-diffusion systems in cases of exchange of stabilities”, Nat. Res. Model., 13:2 (2000), 247–269 | MR
[11] Dumortier F., Smits B., “Transition time analysis in singularly perturbed boundary value problems”, Trans. Amer. Math. Soc., 347 (1995), 4129–4145 | DOI | MR | Zbl
[12] Dumortier F., Roussarie R., Canard cycles and center manifolds, Mem. Amer. Math. Soc., 577, 1996 | MR | Zbl
[13] Gorelov G. N., Soholev V. A., “Duck-trajectories in a thermal explosion problem”, Appl. Math. Letts., 5:6 (1992), 3–6 | DOI | MR | Zbl
[14] Gorelov G. N., Soholev V. A., “Mathematical modeling of critical phenomena in thermal explosion theory”, Combust. Flame, 87 (1991), 203–210 | DOI
[15] Kolesov A. Yu., Rozov N. Kh., ““Okhota na utok” v issledovanii singulyarno vozmuschennykh kraevykh zadach”, Differents. ur-niya, 35:7 (1995), 1356–1365 | MR
[16] Kolesov A. Yu., Rozov N. Kh., “Problema “Buridanova osla” v relaksatsionnykh sistemakh s odnoi medlennoi peremennoi”, Matem. zametki, 65:1 (1999), 153–156 | MR | Zbl
[17] Krupa M., Szmolyan P., “Extending geometric singular perturbation theory to non-hyperbolic points-fold and canard points in two dimensions”, SIAM J. Math. Analys., 33 (2001), 286–314 | DOI | MR | Zbl
[18] Nefedov N. N., Schneider K. R., Delayed exchange of stabilities in singularly perturbed systems, Preprint No. 270, Weierstraß-Inst. fur Angewandte Analysis und Stochastik, Berlin, 1996
[19] Nefedov N. N., Schneider K. R., “Immediate exchange of stabilities in singularly perturbed systems”, Different. Integr. Equat., 12 (1999), 583–599 | MR | Zbl
[20] Neishtadt A. M., “O zapazdyvanii poteri ustoichivosti pri dinamicheskikh bifurkatsiyakh. I”, Differents. ur-niya, 23 (1987), 2060–2067 | MR
[21] Neishtadt A. I., “O zapazdyvanii poteri ustoichivosti pri dinamicheskikh bifurkatsiyakh. II”, Differents. ur-niya, 24 (1988), 226–233 | MR
[22] Shishkova M. A., “Issledovanie odnoi sistemy differentsialnykh uravnenii s malym parametrom pri starshikh proizvodnykh”, Dokl. AN SSSR, 209 (1973), 576–579 | Zbl
[23] Shchepakina E. A., Soholev V. A., “Integral manifolds, canards and black swans”, Nonlinear. Analys. Theory, Methods, Applications, 44 (2001), 897–908 | DOI | MR | Zbl
[24] Chaplygin C. A., Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii, Gostekhteorizdat, M.-L., 1950
[25] Pao C. V., Nonlinear parabolic and equations, Plenum Press, New York, London, 1992 | MR
[26] Vasil'eva A. B., Butuzov V. F., Kalachev L. V., The boundary function method for singular perturbation problems, SIAM Studies Appl. Math., Philadelphia, 1995 | MR
[27] Tikhonov A. N., “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry”, Matem. sb., 31(73):3 (1952), 575–586 | Zbl
[28] Nefedov H. H., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. ur-niya, 31:7 (1995), 1132–1139