Asymptotics of a second-order differential equation with a small parameter in the case when the reduced equation has two solutions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 33-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary value problem for a second-order nonlinear ordinary differential equation with a small parameter multiplying the highest derivative is examined. It is assumed that the reduced equation has two solutions with intersecting graphs. Near the intersection point, the asymptotic behavior of the solution to the original problem is fairly complex. A uniform asymptotic approximation to the solution that is accurate up to any prescribed power of the small parameter is constructed and justified.
@article{ZVMMF_2008_48_1_a2,
     author = {S. F. Dolbeeva and E. A. Chizh},
     title = {Asymptotics of a~second-order differential equation with a~small parameter in the case when the reduced equation has two solutions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {33--45},
     year = {2008},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a2/}
}
TY  - JOUR
AU  - S. F. Dolbeeva
AU  - E. A. Chizh
TI  - Asymptotics of a second-order differential equation with a small parameter in the case when the reduced equation has two solutions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 33
EP  - 45
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a2/
LA  - ru
ID  - ZVMMF_2008_48_1_a2
ER  - 
%0 Journal Article
%A S. F. Dolbeeva
%A E. A. Chizh
%T Asymptotics of a second-order differential equation with a small parameter in the case when the reduced equation has two solutions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 33-45
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a2/
%G ru
%F ZVMMF_2008_48_1_a2
S. F. Dolbeeva; E. A. Chizh. Asymptotics of a second-order differential equation with a small parameter in the case when the reduced equation has two solutions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a2/

[1] Vasilev A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR

[2] Nefedov N., Schneider K., Singularly perturbed systems: Case of exchange of stability, Preprint no 158, Weierstrass-Inst. Angewandte Analys. und Stochastik, Berlin, 1995

[3] Butuzov V., Nefedov N., Schneider K., Singularly perturbed boundary value problems for systems of Tichonov's type in case of exchange of stabilities, Preprint no 408, Weierstrass-Inst. Angewandte Analys. und Stochastik, Berlin, 1998

[4] Butuzov V. F., Nefedov H. H., “Singulyarno vozmuschennaya kraevaya zadacha dlya uravneniya vtorogo poryadka v sluchae smeny ustoichivosti”, Matem. zametki, 63:3 (1998), 354–362 | MR | Zbl

[5] Dolbeeva S. F., Ilin A. M., “Asimptotika resheniya differentsialnogo uravneniya s malym parametrom pri uslovii peresecheniya linii uravneniya”, Dokl. RAN, 408:4 (2006), 443–445 | MR

[6] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[7] Holmes P., “On a second-order boundary-value problem arisinc in combustion theory”, Quart. Appl. Math., 4 (1982), 53–62 | MR

[8] Fedoryuk M. B., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl