Solving clusterization problems using groups of algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 176-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Clusterization is one of the most widespread problems in data analysis. There are many approaches and methods for its solution. However, the result of clusterization strongly depends on the choice of the feature space, on the object proximity measures, and on the method used to formalize the concepts of the object and cluster equivalence. As a result, different solutions can be far apart from each other; they can be degenerate or be quite different from the actually existing groupings. In this paper, clusterization obtained by groups of algorithms is considered; these methods make it possible to construct consistent solutions that best match the actually existing groupings.
@article{ZVMMF_2008_48_1_a12,
     author = {A. S. Biryukov and V. V. Ryazanov and A. S. Shmakov},
     title = {Solving clusterization problems using groups of algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {176--192},
     year = {2008},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a12/}
}
TY  - JOUR
AU  - A. S. Biryukov
AU  - V. V. Ryazanov
AU  - A. S. Shmakov
TI  - Solving clusterization problems using groups of algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 176
EP  - 192
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a12/
LA  - ru
ID  - ZVMMF_2008_48_1_a12
ER  - 
%0 Journal Article
%A A. S. Biryukov
%A V. V. Ryazanov
%A A. S. Shmakov
%T Solving clusterization problems using groups of algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 176-192
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a12/
%G ru
%F ZVMMF_2008_48_1_a12
A. S. Biryukov; V. V. Ryazanov; A. S. Shmakov. Solving clusterization problems using groups of algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 176-192. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a12/

[1] Aivazyan S. A., Bukhshtaber V. M., Enyukov E. S., Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti, Finansy i statistika, M., 1989

[2] Duda R., Khart P., Raspoznavanie obrazov i analiz stsen, Mir, M., 1976

[3] Zagoruiko N. G., Metody raspoznavaniya i ikh primenenie, Sov. radio, M., 1972

[4] Ryazanov V. V., “O postroenii optimalnykh algoritmov raspoznavaniya i taksonomii (klassifikatsii) pri reshenii prikladnykh zadach”, Raspoznavanie, klassifikatsiya, prognoz: Matem. metody i ikh primenenie, Vyp. 1, Nauka, M., 1988, 229–279

[5] Ryazanov V. V., “Komitetnyi sintez algoritmov raspoznavaniya i klassifikatsii”, Zh. vychisl. matem. i matem. fiz., 21:6 (1981), 1533–1543 | MR | Zbl

[6] Ryazanov V. V., “O sinteze klassifitsiruyuschikh algoritmov na konechnykh mnozhestvakh algoritmov klassifikatsii (taksonomii)”, Zh. vychisl. matem. i matem. fiz., 22:2 (1982), 429–440 | MR | Zbl

[7] Ryazanov V. V., “One approach tor classification (taxonomy) problem solution by sets of heuristic algorithms”, 9-th Scandinavian Conf. Image Analys., v. 2, Uppsala, 1995, 997–1002

[8] Ryazanov V. V., Sen'ko O. V., Zhuravlev Yu. I., “Mathematical methods for pattern recognition: logical, optimization, algebraic approaches”, 14th Internat. Conf. on Pattern Recognition, Brisbane, 1998, 831–834

[9] Voronchikhin B. A., Ryazanov B. B., “O videologicheskom podkhode k resheniyu zadach taksonomii”, Tezisy dokl. na konf. MMRO-8, M., 1997, 30–31

[10] Kaiypis G., Kumar V., “Multilevel $k$-way hypergraph partitioning”, VLSI Design, 11:3 (2000), 285–300 | DOI

[11] Hofmann H., German Credit Data, FB Wirtschaftswissenschaften, Bd. 5, Institut für Statistik und Ökonometrie Universität Hamburg, Hamburg 13: Von-Melle-Park, 2000

[12] Mancasarian O. L., Wolber W. H., “Cancer diagnosis via linear programming”, SIAM News, 23:5 (1990), 1–18

[13] Forina M., Leardi R., Armanino C. et al., PARVUS – an extendible package for data exploration, classification and correlation, Inst. Pharmaceutical and Food Analys. and Technol., Genoa, 1998

[14] Zhuravlev Yu. I., Ryazanov V. V., Senko O. B., Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya, FAZIS, M., 2006