@article{ZVMMF_2008_48_1_a11,
author = {O. A. Shcherbina},
title = {Local elimination algorithms for solving sparse discrete problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {159--175},
year = {2008},
volume = {48},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a11/}
}
TY - JOUR AU - O. A. Shcherbina TI - Local elimination algorithms for solving sparse discrete problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 159 EP - 175 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a11/ LA - ru ID - ZVMMF_2008_48_1_a11 ER -
O. A. Shcherbina. Local elimination algorithms for solving sparse discrete problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 1, pp. 159-175. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_1_a11/
[1] Zhuravlev Yu. I., Izbrannye nauchnye trudy, Magistr, M., 1998
[2] Zhuravlev Yu. I., Losev G. F., “Okrestnosti v zadachakh diskretnoi matematiki”, Kibernetika i sistemnyi analiz, 1995, no. 2, 32–41 | MR | Zbl
[3] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii: problemy, metody resheniya, issledovaniya, Nauk. dumka, Kiev, 2003
[4] Dechter R., “Bucket elimination: A unifying framework for reasoning”, Artificial Intelligence, 113 (1999), 41–85 | DOI | MR | Zbl
[5] Neapolitan R. E., Probabilistic reasoning in expert systems, Wiley, New York, 1990 | MR
[6] Pearl J., Probabilistic reasoning in intelligent systems, Morgan Kaufmann, San Mateo, 1998
[7] Beeri C., F agin R., Maier D., Yannakakis M., “On the desirability of acyclic database schemes”, J. ACM, 30 (1983), 479–513 | DOI | MR | Zbl
[8] Rose D. J., “A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations”, Graph Theory and Computing, Acad. Press, New York, 1972, 183–217 | MR
[9] Supply chain optimization: product/process design, facilities location and flow control, XVI, Ser. Appl. Optimizat., 94, Springer, New York, 2005
[10] Cook S. A., “The complexity of theorem-proving procedures”, Proc. 3rd Ann. ACM Symp. on Theory Comput. Mach., New York, 1971, 151–158 | Zbl
[11] Lauritzen S. L., Spiegelhalter D. J., “Local computations with probabilities on graphical structures and their application to expert systems”, J. Roy. Statist. Soc. Ser. B, 50 (1988), 205–247 | MR
[12] Golumbic M. C., Algorithmic graph theory and perfect graphs, Acad. Press, New York, 1980 | MR
[13] Courcelle B., “Graph rewriting: An algebraic and logic approach”, Handbook Theor. Comput. Sci., v. B, Elsevier, 1990, 193–242 | MR | Zbl
[14] Arnborg S., Corneil D. G., Proskurowski A., “A complexity of finding embedding in a $k$-tree”, SIAM J. Alg. Disc. Meth., 8 (1987), 277–284 | DOI | MR | Zbl
[15] Scherbina O. A., “O lokalnykh algoritmakh resheniya kvaziblochnykh zadach diskretnogo programmirovaniya”, Probl. kibernetiki, 40, Nauka, M., 1983, 171–200
[16] Scherbina O. A., “Lokalnye algoritmy dlya blochno-drevovidnykh zadach diskretnogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 25:8 (1985), 1143–1154 | MR
[17] Scherbina O.A., “O neserialnoi modifikatsii lokalnogo algoritma dekompozitsii zadach diskretnoi optimizatsii”, Dinamich. sistemy, 19, 2005, 179–190
[18] Scherbina O. A., “Eliminatsionnye algoritmy dekompozitsii zadach diskretnoi optimizatsii”, Tavrich. vestn. informatiki i matem., 2006, no. 2, 28–41
[19] Scherbina O. A., “Lokalnye algoritmy i drevovidnaya dekompozitsiya dlya zadach diskretnoi optimizatsii”, Dinamich. sistemy, 20, 2006, 89–103
[20] Bertele U., Brioschi F., Nonserial dynamic programming, Acad. Press, New York, 1972 | MR | Zbl
[21] Harary F., Norman R. Z., Cartwright D., Structural models: An introduction to the theory of directed graphs, John Wiley Sons, New York, 1965 | MR | Zbl
[22] Amestoy P. R., Davis T. A., Duff I. S., “An approximate minimum degree ordering algorithm”, SIAM J. Matrix Analys. and Appl., 17:4 (1996), 886–905 | DOI | MR | Zbl
[23] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl
[24] Heggernes P., “Minimal triangulations of graphs: A survey”, Discrete Math., 305:3 (2006), 297–317 | DOI | MR
[25] Evstigneev V. A., Kasyanov V. H., Tolkovyi slovar po teorii grafov v informatike i programmirovanii, Nauka, Novosibirsk, 1999 http://pco.iis.nsk.su/grap | Zbl
[26] Parter S., “The use of linear graphs in Gauss elimination”, SIAM Rev., 3 (1961), 119–130 | DOI | MR | Zbl
[27] Fulkerson D. R., Gross O. A., “Incidence matrices and interval graphs”, Pacific J. Math., 15 (1965), 835–855 | MR | Zbl
[28] Yannakakis M., “Computing the minimum full-in is NP-complete”, SIAM J. Alg. Disc. Meth., 2 (1981), 77–79 | DOI | MR | Zbl
[29] Robertson N., Seymour P., “Graph minors II. Algorithmic aspects of treewidth”, J. Algorithms, 7 (1986), 309–322 | DOI | MR | Zbl
[30] Bodlaender H. L., “Discovering treewidth”, Proc. SOFSEM, LNCS, 3381, Springer, Berlin etc., 2006, 1–16 | MR
[31] Dechter R., El Fattah Y., “Topological parameters for time-space tradeoff”, Artificial Intelligence, 125:1–2 (2001), 93–118 | DOI | MR | Zbl
[32] Heggernes P., Treewidth, partial $k$-trees, and chordal graphs http://www.ii.uib.no/~pinar/chordal.pdf
[33] Dirac G. A., “On rigid circuit graphs”, Ann. Math. Sem. Hamburg, 25, Hamburg, 1961, 71–76 | MR | Zbl
[34] Bernstein P. A., Goodman N., “Power of natural semijoints”, SIAM J. Comput., 10:4 (1981), 751–771 | DOI | MR | Zbl
[35] Scherbina O. A., “Lokalnye eliminatsionnye algoritmy dlya zadach udovletvoreniya ogranichenii”, Tavrich. vestn. informatiki i matem., 2007, no. 1, 24–39
[36] Scherbina O. A., “Drevovidnaya dekompozitsiya i zadachi diskretnoi optimizatsii (obzor)”, Kibernetika i sistemnyi analiz, 2007, no. 4, 102–118