On the problem of superconvergence of finite element method algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2180-2185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The coincidence of an approximate solution to the boundary value problem for an ordinary differential equation with the exact solution at mesh nodes is proved for a certain class of the generalized finite element methods.
@article{ZVMMF_2008_48_12_a9,
     author = {A. A. Panin},
     title = {On the problem of superconvergence of finite element method algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2180--2185},
     year = {2008},
     volume = {48},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a9/}
}
TY  - JOUR
AU  - A. A. Panin
TI  - On the problem of superconvergence of finite element method algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2180
EP  - 2185
VL  - 48
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a9/
LA  - ru
ID  - ZVMMF_2008_48_12_a9
ER  - 
%0 Journal Article
%A A. A. Panin
%T On the problem of superconvergence of finite element method algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2180-2185
%V 48
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a9/
%G ru
%F ZVMMF_2008_48_12_a9
A. A. Panin. On the problem of superconvergence of finite element method algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2180-2185. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a9/

[1] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[2] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[3] Babuška I., Bauerjee U., Oshorn J. E., Superconvergence in the generalized finite element method, Techn. Rep. 0545, TICAM, Univ. Texas, Austin, Texas, 2004 http://www.ices.utexas.edu/media/reports/2005/0545.pdf

[4] Oganesyan L. A., Rukhovets L. A., “Issledovanie skorosti skhodimosti variatsionno-raznostnykh skhem dlya ellipticheskikh uravnenii vtorogo poryadka v dvumernoi oblasti s gladkoi granitsei”, Zh. vychisl. matem. i matem. fiz., 9:5 (1969), 1102–1120 | Zbl

[5] Babuška I. M., Sauter S. A., “Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?”, SIAM J. Numer. Analys., 34:6 (1997), 2392–2423 | DOI | MR | Zbl

[6] Oden J. T., Prudhomme S., Demkowicz L., A posteriori error estimation for acoustic wave propagation problems, Techn. Rept 0432, TICAM, Univ. Texas, Austin, Texas, 2004 http://www.ices.utexas.edu/media/reports/2004/0432.pdf | MR

[7] Babuška I., Caloz G., Oshorn J., “Special finite element methods for a class of second order elliptic problems with rough coefficients”, SIAM J. Numer. Analys., 31:4 (1994), 945–981 | DOI | MR | Zbl

[8] Melenk J. M., On generalized finite element methods, PhD thesis, Univ. Maryland at College Park, 1995 http://www.math.tuwien.ac.at/~melenk/publications/diss.ps.gz

[9] Melenk J. M., Babuška I., “The partition of unity finite element method: Basic theory and applications”, Comput. Meth. Appl. Mech. Engng., 139:1–4 (1996), 289–314 | DOI | MR | Zbl

[10] Babuška I., Melenk J. M., “The partition of unity finite element method”, Int. J. Numer. Meth. Engng., 40:4 (1997), 727–758 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Nakao M. T., Hashimoto K., Watanahe Y., “A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems”, Computing, 75:1 (2005), 1–14 | DOI | MR | Zbl

[12] Nakao M. T., Hashimoto K., Constructive error estimates of finite element approximations for non-coercive elliptic problems and its applications, MHF Preprint Series, MHF 2007-5, Fac. Math. Kyushi Univ. Fukuoka, Japan, 12 pp.

[13] http://hdl.handle.net/2324/3405

[14] Mikhlin S. G., Pryamye metody v matematicheskoi fizike, Gostekhteorizdat, M., L., 1950

[15] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[16] Nakao M. T., Yamamoto N., Kimura S., “On the best constant in the error bound for the $H_0^1$-projection into piecewise polynomial spaces”, J. Approx. Theory, 93:3 (1998), 491–500 | DOI | MR | Zbl

[17] Schultz M., Spline analysis, Prentice-Hall, London, 1973 | MR | Zbl

[18] Sauter S., “A refined finite element convergence theory for highly indefinite Helmholtz problems”, Computing, 78:2 (2006), 101–115 | DOI | MR | Zbl