The polygonal method for constructing exact solutions to certain nonlinear differential equations describing water waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2151-2162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for constructing exact solutions to certain nonlinear differential equations of mathematical physics. Possible applications of this method are illustrated using equations arising in the description of water waves. Exact solutions to the generalized Gardner, Kawahara, and Benjamin–Bona–Mahony equations are constructed.
@article{ZVMMF_2008_48_12_a7,
     author = {M. V. Demina and N. A. Kudryashov and D. I. Sinel'shchikov},
     title = {The polygonal method for constructing exact solutions to certain nonlinear differential equations describing water waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2151--2162},
     year = {2008},
     volume = {48},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a7/}
}
TY  - JOUR
AU  - M. V. Demina
AU  - N. A. Kudryashov
AU  - D. I. Sinel'shchikov
TI  - The polygonal method for constructing exact solutions to certain nonlinear differential equations describing water waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2151
EP  - 2162
VL  - 48
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a7/
LA  - ru
ID  - ZVMMF_2008_48_12_a7
ER  - 
%0 Journal Article
%A M. V. Demina
%A N. A. Kudryashov
%A D. I. Sinel'shchikov
%T The polygonal method for constructing exact solutions to certain nonlinear differential equations describing water waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2151-2162
%V 48
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a7/
%G ru
%F ZVMMF_2008_48_12_a7
M. V. Demina; N. A. Kudryashov; D. I. Sinel'shchikov. The polygonal method for constructing exact solutions to certain nonlinear differential equations describing water waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2151-2162. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a7/

[1] Lamb K. G., Stastna M., “Large fully nonlinear internal solitary waves: the effect of bakc-ground current”, Phys. Fluids, 14 (2002), 2897–2999 | MR

[2] Jeffrey A., Kakutani T., “Weak nonlinear dispersive waves: A discussion centered around the Korteweg–De Vries equation”, SIAM Rev., 4 (1972), 582–643 | DOI | MR

[3] Zhang J., “New solitary wave solution of the combined KdV and mKdV eauqtion”, Int. J. Theor. Phys., 37 (1998), 1541–1546 | DOI | MR | Zbl

[4] Wadati M., “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 32:6 (1972), 1681 | DOI | MR

[5] Kudryashov H. A., Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, In-t kompyut. issledovanii, Moskva, Izhevsk, 2004

[6] Kawahara T., “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan, 33:1 (1972), 260–264 | DOI | MR

[7] Karpman V. I., “Stabilization of soliton instabilities by higher order dispersion: KdV-type equations”, Phys. Lett. A, 210:1–2 (1996), 77–84 | DOI | MR | Zbl

[8] Dey B., Khare A., Kumar C. N., “Stationary solitons of the fifth-order KdV-type equations and their stabilization”, Phys. Letts. A, 223:6 (1996), 449–452 | DOI | MR | Zbl

[9] Dey B., Khare A., “Stability of compactons solutions of fifth-order KdV nonlinear dispersive equations”, J. Phys. A, 33 (2000), 5335–5344 | DOI | MR | Zbl

[10] Bona J., “On solitary waves and their role in the evolution of long waves”, Aplication of nonlinear analysis, Pitman, Boston, MA, 1981

[11] Micu S., “On the controllability of the linearized Bejamin–Bona–Mahony equation”, SIAM. J. Control. Optimizat., 39:6 (2001), 1677–1696 | DOI | MR | Zbl

[12] Wazwaz A.-M., “A study of nonlinear dispersive equations with solitary-wave solutions having compact support”, Math. Comput. Simulation, 56 (2001), 269–276 | DOI | MR | Zbl

[13] Elwaki S. A., Zahran S.A., Sarby R., “Exact travelling wave solutions for the generalized shallow water wave equation”, Chaos, Solitons and Fractals, 17 (2003), 121–126 | DOI | MR | Zbl

[14] Shiqiang D., “Solitary waves at the interface of a two-layer fluid”, Appl. Math. Mech., 3:6 (1982), 721–731 | MR

[15] Kudryashov N. A., “Simplest equation method to look for exact solutions of nonlinear differential equations”, Chaos, Solitons and Fractals, 24:5 (2005), 1217–1231 | DOI | MR | Zbl

[16] Kudryashov N. A., Demina M. V., “Polygons of differential equations for finding exact solution”, Chaos, Solitons and Fractals, 33:5 (2007), 1480–1496 | DOI | MR | Zbl

[17] Kudryashov H. A., “Tochnye solitonnye resheniya obobschennogo evolyutsionnogo uravneniya volnovoi dinamiki”, Prikl. matem. i mekhan., 52:3 (1988), 465–470 | MR

[18] Kudryashov N. A., “Exact solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. Lett. A, 147:5–6 (1990), 287–291 | DOI | MR

[19] Gudkov B. B., “Yavnyi vid volnovykh reshenii evolyutsionnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 66–72 | MR | Zbl

[20] Gudkov V. V., “Novye vidy volnovykh reshenii obschego nelineinogo uravneniya Kleina–Gordona”, Zh. vychisl. matem. i matem. fiz., 37:5 (1997), 599–604 | MR | Zbl

[21] Bryuno A. D., “Pervye priblizheniya differentsialnykh uravnenii”, DAN, 335:4 (1994), 413–416 | MR

[22] Bryuno A. D., “Asimptotiki i razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, Uspekhi matem. nauk, 59:3 (2004), 31–80 | MR | Zbl

[23] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, Fizmatlit, M., 1998 | MR | Zbl