Local dynamics of equations with large delay
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2141-2150
Voir la notice de l'article provenant de la source Math-Net.Ru
The local dynamics of a differential equation with large delay is analyzed using the normal forms technique. It is shown that, in the critical cases, families of parabolic equations play the role of infinite-dimensional normal forms. It is demonstrated analytically that even a very simple first-order delay equation can have a complicated dynamical behavior. Methods for constructing classes of stable modes for such equations are described. The proposed methods are extended for the case of secondorder equations.
@article{ZVMMF_2008_48_12_a6,
author = {I. S. Kashchenko},
title = {Local dynamics of equations with large delay},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2141--2150},
publisher = {mathdoc},
volume = {48},
number = {12},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a6/}
}
I. S. Kashchenko. Local dynamics of equations with large delay. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2141-2150. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a6/