On the best parametrization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2129-2140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical solution to a system of nonlinear algebraic or transcendental equations with several parameters is examined in the framework of the parametric continuation method. Necessary and sufficient conditions are proved for choosing the best parameters, which provide the best condition number for the system of linear continuation equations. Such parameters have to be sought in the subspace tangent to the solution space of the system of nonlinear equations. This subspace is obtained if the original system of nonlinear equations is solved at the various parameter values from a given set. The parametric approximation of curves and surfaces is considered.
@article{ZVMMF_2008_48_12_a5,
     author = {E. B. Kuznetsov},
     title = {On the best parametrization},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2129--2140},
     year = {2008},
     volume = {48},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a5/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
TI  - On the best parametrization
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2129
EP  - 2140
VL  - 48
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a5/
LA  - ru
ID  - ZVMMF_2008_48_12_a5
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%T On the best parametrization
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2129-2140
%V 48
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a5/
%G ru
%F ZVMMF_2008_48_12_a5
E. B. Kuznetsov. On the best parametrization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2129-2140. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a5/

[1] Trenogin V. A., “Teorema Lyusternika i nailuchshaya parametrizatsiya reshenii nelineinykh uravnenii”, Funkts. analiz i ego prilozh., 32:1 (1998), 87–90 | MR | Zbl

[2] Kuznetsov E. B., Shalashilin V. I., “O nailuchshei mnogomernoi parametrizatsii”, Differents. ur-niya, 36:6 (2000), 841–843 | MR | Zbl

[3] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR

[4] Shalashilin V. I., Kuznetsov E. B., “Nailuchshii parametr prodolzheniya resheniya”, Dokl. RAN, 334:5 (1994), 566–568 | MR | Zbl

[5] Ortega Dzh., Pul U., Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR | Zbl

[6] Kurosh A. G., Kurs vysshei algebry, Fizmatgiz, M., 1963 | MR

[7] Lahaye M. E., “Une metode de resolution d'une categorie d'equations transcendentes”, Compt. rend. hebdomataires des seances de L'Acad. des sci., 198:21 (1934), 1840–1842

[8] Davidenko D. F., “Ob odnom novom metode chislennogo resheniya sistem nelineinykh uravnenii”, Dokl. AN SSSR, 88:4 (1953), 601–602 | MR | Zbl

[9] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivykh”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1540–1551 | MR | Zbl

[10] Allgower E. L., George K., “Numerical path following”, Handbook of Numer. Analys., v. 5, North-Holland, 1997, 3–207 | MR

[11] Ren Y., Spence A., “A note on bifurcation points for index-1 differential-algebraic problems”, J. Comput. Appl. Math., 110 (1999), 1–14 | DOI | MR | Zbl

[12] Bathe K.-J., Dvorkin E. N., “On the automatic solution of nonlinear finite element equations”, Comput. and Structures, 17:5–6 (1983), 871–879 | DOI

[13] Annin B. D., Alekhin V. V., Korobeinikov C. H., “Opredelenie predelnykh sostoyanii uprugoplasticheskikh tel”, Prikl. mekhan. i tekhn. fiz., 41:5 (2000), 196–204 | Zbl

[14] Golovanov A. I., Sultanov L. U., “Zakriticheskoe povedenie uprugoplasticheskikh tel pri bolshikh deformatsiyakh”, Materialy XV Mezhdunar. konf. po vychisl. mekhan. i sovrem. prikl. programmnym sistemam, Izd-vo MGU, M., 2007, 165–166

[15] Foks A., Pratt M., Vychislitelnaya geometriya, Mir, M., 1982 | MR

[16] Hoschek J., Lasser D., Fundamentals of computer aided geometric design, AKPeters LTD, Wellesley, Massachusetts, 1993 | MR

[17] Kuznetsov E. B., Shalashilin V. I., “Parametricheskoe priblizhenie”, Zh. vychisl. matem. i matem. fiz., 34:12 (1994), 1757–1769 | MR | Zbl

[18] Kuznetsov E. B., Yakimovich A. Yu., “Nailuchshaya parametrizatsiya v zadachakh priblizheniya krivykh i poverkhnostei”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 760–774 | MR | Zbl

[19] Nikulin E. A., Kompyuternaya geometriya i algoritmy mashinnoi grafiki, BKhV-Peterburg, SPb., 2003

[20] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko B. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[21] Zavyalov Yu. S., Leus V. A., Skorospelov V. A., Splainy v inzhenernoi geometrii, Mashinostr., M., 1985 | MR