The use of additional diminishing disturbances in Fejer models of iterative algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2121-2128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behavior of Fejer processes with diminishing disturbances generated by a small shift in the argument of the Fejer operator is studied. It is shown that, if the operator is locally strongly Fejer, a diminishing disturbance does not prevent convergence to an attracting set. At the same time, such a disturbance can be used to furnish the process with additional properties that ensure convergence to certain subsets of the attracting set. In particular, based on this scheme, new parallel decomposition methods for optimization problems can be suggested that do not require that the constraints possess a specific structure.
@article{ZVMMF_2008_48_12_a4,
     author = {E. A. Nurminski},
     title = {The use of additional diminishing disturbances in {Fejer} models of iterative algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2121--2128},
     year = {2008},
     volume = {48},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a4/}
}
TY  - JOUR
AU  - E. A. Nurminski
TI  - The use of additional diminishing disturbances in Fejer models of iterative algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2121
EP  - 2128
VL  - 48
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a4/
LA  - ru
ID  - ZVMMF_2008_48_12_a4
ER  - 
%0 Journal Article
%A E. A. Nurminski
%T The use of additional diminishing disturbances in Fejer models of iterative algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2121-2128
%V 48
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a4/
%G ru
%F ZVMMF_2008_48_12_a4
E. A. Nurminski. The use of additional diminishing disturbances in Fejer models of iterative algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2121-2128. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a4/

[1] Eremin I. I., “Obobschenie relaksatsionnogo metoda Motskina–Agmona”, Uspekhi matem. nauk, 20:2(122) (1965), 183–187 | MR | Zbl

[2] Eremin I. I., “O nekotorykh iteratsionnykh metodakh v vypuklom programmirovanii”, Ekonomika i matem. metody, 2:6 (1966), 870–886 | MR

[3] Eremin I. I., “Metody feierovskikh priblizhenii v vypuklom programmirovanii”, Matem. zametki, 3:2 (1968), 217–234 | MR

[4] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, UrO RAN, Ekaterinburg, 2005, 210 pp. | MR

[5] Bauschke H. H., Borwein J. M., “On projection algorithms for solving convex feasibility problems”, SIAM Revs, 38:3 (1996), 367–426 | DOI | MR | Zbl

[6] Flam S. D., Zowe J., “Relaxed outer projections, weighted averages and convex feasibilities”, BIT, 30 (1990), 289–300 | DOI | MR | Zbl

[7] Motzkin T. S., Schoenberg J. J., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 393–104 | MR

[8] Agmon S., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 383–392 | MR

[9] Nurminskii E. A., Chislennye metody vypukloi optimizatsii, Nauka, M., 1991 | MR

[10] Censor Y., “Row-action methods for huge and sparse systems and their applications”, SIAM Revs, 23 (1988), 444–466 | DOI | MR