Newton's method as a tool for finding the eigenvalues of certain two-parameter (multiparameter) spectral problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2107-2112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An iterative algorithm is examined for finding the eigenvalues of the two-parameter (multiparameter) algebraic eigenvalue problem. This algorithm uses Newton's method and an efficient numerical procedure for differentiating determinants. Some numerical examples are given.
@article{ZVMMF_2008_48_12_a2,
     author = {B. M. Podlevskii},
     title = {Newton's method as a~tool for finding the eigenvalues of certain two-parameter (multiparameter) spectral problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2107--2112},
     year = {2008},
     volume = {48},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a2/}
}
TY  - JOUR
AU  - B. M. Podlevskii
TI  - Newton's method as a tool for finding the eigenvalues of certain two-parameter (multiparameter) spectral problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2107
EP  - 2112
VL  - 48
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a2/
LA  - ru
ID  - ZVMMF_2008_48_12_a2
ER  - 
%0 Journal Article
%A B. M. Podlevskii
%T Newton's method as a tool for finding the eigenvalues of certain two-parameter (multiparameter) spectral problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2107-2112
%V 48
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a2/
%G ru
%F ZVMMF_2008_48_12_a2
B. M. Podlevskii. Newton's method as a tool for finding the eigenvalues of certain two-parameter (multiparameter) spectral problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2107-2112. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a2/

[1] Sleeman B. D., Multiparameter spectral theory in Hilbert space, Pitman Press, London, 1978 | MR | Zbl

[2] Volkmer H., Multiparameter eigenvalue problems and expansion theorem, Lect. Notes Math., 1336, 1988 | MR

[3] Roach G. F., “A Fredholm theory for multiparameter problems”, Nieuw Arch. Wisk., 24 (1976), 49–76 | MR | Zbl

[4] Berezansky Yu. M., Konstantinov A. Yu., “Expansion in eigenvector of multiparameter spectral problems”, Ukr. matem. zhurnal, 44:7 (1992), 901–913 | MR

[5] Fox L., Hayes L., Mayers D. F., “The double eigenvalue problem. Topics in numerical analysis”, Proc. Irish Acad. Conf. Numer. Analys., Doublin, 1972, 93–112 | MR

[6] Henke H., “Eine Methode zur Losung spezieller Randwertaufgaben der Mathieuschen Differentialgleichung”, Z. Angew. Math. und. Mech., 52 (1972), 250–251 | DOI | MR | Zbl

[7] Binding P. A., Browne P. J., “A variational approach to multiparameter eigenvalue problems for matrices”, J. Math. Analysis, 8 (1977), 763–777 | DOI | MR | Zbl

[8] Abramov A. A., Ulyanova V. I., “Odin metod resheniya samosopryazhennykh mnogoparametricheskikh spektralnykh zadach dlya slabo svyazannykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem fiz., 37:5 (1997), 566–571 | MR | Zbl

[9] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Metod resheniya mnogoparametricheskoi spektralnoi zadachi dlya nekotorykh sistem differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 40:1 (2000), 21–29 | MR | Zbl

[10] Savenko P. O., Protsakh L. P., “Variatsiinii pidkhid do rozv'yazuvannya zadachi na vlasni znachennya z neliniinim vektornim spektralnim parametrom”, Matem. metodi ta fiz.-mekh. polya, 47:3 (2004), 7–15 | MR | Zbl

[11] Podlevskii B. M., “Variatsiinii pidkhid do rozv'yazuvannya dvoparametrichnikh zadach na vlasni znachennya”, Matem. metodi ta fiz.-mexan. polya, 48:1 (2005), 31–35 | MR

[12] Raic Dzh., Matrichnye vychisleniya i matematicheskoe obespechenie, Mir, M., 1984 | MR