The use of order statistic numerical simulation algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2237-2246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modification of the standard algorithm for the simulation of order statistics for a uniform distribution is proposed that uses confidence intervals. It is found that one of the applications of the algorithms for the simulation of order statistics (namely, simulation of the beta distribution with integer parameters) gives more efficient methods for the simulation of order statistics than the algorithm based on confidence intervals. It is shown that the resulting algorithm can be used for the efficient simulation of random variables with polynomial density and of beta distributed random variables with large noninteger parameters.
@article{ZVMMF_2008_48_12_a14,
     author = {A. V. Voitishek and A. P. Myasnikov and L. E. Saneev},
     title = {The use of order statistic numerical simulation algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2237--2246},
     year = {2008},
     volume = {48},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a14/}
}
TY  - JOUR
AU  - A. V. Voitishek
AU  - A. P. Myasnikov
AU  - L. E. Saneev
TI  - The use of order statistic numerical simulation algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2237
EP  - 2246
VL  - 48
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a14/
LA  - ru
ID  - ZVMMF_2008_48_12_a14
ER  - 
%0 Journal Article
%A A. V. Voitishek
%A A. P. Myasnikov
%A L. E. Saneev
%T The use of order statistic numerical simulation algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2237-2246
%V 48
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a14/
%G ru
%F ZVMMF_2008_48_12_a14
A. V. Voitishek; A. P. Myasnikov; L. E. Saneev. The use of order statistic numerical simulation algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2237-2246. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a14/

[1] Deivid G., Poryadkovye statistiki, Nauka, M., 1979 | MR

[2] Mikhailov G. A., Voitishek A. B., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izd. tsentr “Akademiya”, M., 2006

[3] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[4] Khastings N., Pikok Dzh., Spravochnik po statisticheskim raspredeleniyam, Statistika, M., 1980

[5] Mikhailov G. A., “Dva zamechaniya o modelirovanii sluchainykh velichin”, Zh. vychisl. matem. i matem. fiz., 12:5 (1972), 1350–1352

[6] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986 | MR | Zbl

[7] Johnk M. F., “Erzeugung von betaverteilten und gammaverteilten Zufallszahlen”, Metrica, 8 (1964), 5–15 | DOI | MR

[8] Iomdin G. I., Kanevskii V. A., Mikhailov G. A., “O nekotorykh algoritmakh modelirovaniya beta- i gamma-raspredelenii i ikh bystrodeistvii”, Metody Monte-Karlo v vychisl. matem. i matem. fiz., VTs SO RAN SSSR, Novosibirsk, 1974, 47–54

[9] Voytishek A. V., Kablukova E. G., “Using the approximation functional bases in Monte Carlo methods”, Rus. J. Numer. Analys. and Math. Modelling, 18:6 (2003), 521–542 | DOI | MR | Zbl

[10] Bakhvalov H. S., Chislennye metody, Nauka, M., 1975

[11] Berezin I. S., Zhidkov H. P., Metody vychislenii, Fizmatgiz, M., 1962

[12] Bakhvalov N. C., Lapin A. B., Chizhonkov E. V., Chislennye metody v zadachakh i uprazhneniyakh, Vyssh. shkola, M., 2000

[13] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[14] Kondyurin Yu. N., “O modelirovanii sluchainykh velichin metodom superpozitsii”, Zh. vychisl. matem. i matem. fiz., 10:1 (1970), 262–266 | Zbl