TVD scheme for computing open channel wave flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2212-2224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the shallow water equations in the first approximation (Saint-Venant equations), a TVD scheme is developed for shock-capturing computations of open channel flows with discontinuous waves. The scheme is based on a special nondivergence approximation of the total momentum equation that does not involve integrals related to the cross-section pressure force and the channel wall reaction. In standard divergence difference schemes, most of the CPU time is spent on the computation of these integrals. Test computations demonstrate that the discontinuity relations reproduced by the scheme are accurate enough for actual discontinuous wave propagation to be numerically simulated. All the qualitatively distinct solutions for a dam collapsing in a trapezoidal channel with a contraction in the tailwater area are constructed as an example.
@article{ZVMMF_2008_48_12_a12,
     author = {M. V. Buntina and V. V. Ostapenko},
     title = {TVD scheme for computing open channel wave flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2212--2224},
     year = {2008},
     volume = {48},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a12/}
}
TY  - JOUR
AU  - M. V. Buntina
AU  - V. V. Ostapenko
TI  - TVD scheme for computing open channel wave flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2212
EP  - 2224
VL  - 48
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a12/
LA  - ru
ID  - ZVMMF_2008_48_12_a12
ER  - 
%0 Journal Article
%A M. V. Buntina
%A V. V. Ostapenko
%T TVD scheme for computing open channel wave flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2212-2224
%V 48
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a12/
%G ru
%F ZVMMF_2008_48_12_a12
M. V. Buntina; V. V. Ostapenko. TVD scheme for computing open channel wave flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2212-2224. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a12/

[1] Stoker Dzh. Dzh., Volny na vode. Matematicheskaya teoriya i prilozheniya, Izd-vo inostr. lit., M., 1959

[2] Voevodin A. F., Shugrin S. M., Chislennye metody rascheta odnomernykh sistem, Nauka, Novosibirsk, 1981 | MR

[3] Kulikovskii L. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[4] Ostapenko V. V., Giperbolicheskie sistemy zakonov sokhraneniya i ikh prilozhenie k teorii melkoi vody. Kurs lektsii, Novosibirsk, 2004

[5] Vasilev O. F., Gladyshev M. T., “O raschete preryvnykh voln v otkrytykh ruslakh”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1966, no. 6, 184–190

[6] Atavin A. A., Gladyshev M. T., Shugrin S. M., “O razryvnykh techeniyakh v otkrytykh ruslakh”, Dinamika sploshnoi sredy. Sb. nauchn. tr., 22, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1975, 37–64

[7] Ostapenko V. V., “O skvoznom raschete preryvnykh voln v otkrytykh ruslakh”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 743–752 | MR | Zbl

[8] Delis A., Sheets C. P., “TVD schemes for open channel flow”, Int. J. Numer. Methods in Fluids, 26 (1998), 791–809 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[9] Gottardi G., Venutelli M., “Central schemes for open channel flow”, Int. J. Numer. Methods in Fluids, 41 (2003), 841–861 | DOI | Zbl

[10] Wang J., Ni H., He Y., “Finite-difference TVD schemes for computation of dam-break problems”, J. Hydr. Engng. ASCE, 126 (2000), 253–262 | DOI

[11] Shokin Yu. I., Chubarov L. B., Marchuk A. G., Simonov K. V., Vychislitelnyi eksperiment v probleme tsunami, Nauka, SO, Novosibirsk, 1989

[12] Bukreev V. I., Gusev A. B., Malysheva A. A., Malysheva H. A., “Eksperimentalnaya proverka gazogidravlicheskoi analogii na primere zadachi o razrushenii plotiny”, Izv. RAN. Mekhan. zhidkosti i gaza, 2004, no. 5, 143–152 | Zbl

[13] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[14] Lax P. D., Wendroff B., “Systems of conservation laws”, Communs Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[15] Ostapenko B. B., “Ob ekvivalentnykh opredeleniyakh ponyatiya konservativnosti dlya konechno-raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 29:8 (1989), 1114–1128 | MR

[16] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1985 | Zbl

[17] Ostapenko V. V., “O silnoi monotonnosti nelineinykh raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1170–1185 | MR | Zbl

[18] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communs Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl

[19] Godunov C. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | MR | Zbl

[20] Arora M., Roe P. L., “On postshock oscillations due to shock capturing schemes in unsteady flows”, J. Comput. Phys., 130 (1997), 25–40 | DOI | MR | Zbl

[21] Ostapenko B. B., “O silnoi monotonnosti raznostnykh skhem dlya sistem zakonov sokhraneniya”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1687–1704 | MR | Zbl

[22] Ostapenko V. V., “O skhodimosti na udarnoi volne raznostnykh skhem skvoznogo scheta, invariantnykh otnositelno preobrazovaniya podobiya”, Zh. vychisl. matem. i matem. fiz., 26:11 (1986), 1661–1678 | MR | Zbl

[23] Ostapenko V. V., “Metod teoreticheskoi otsenki disbalansov nekonservativnykh raznostnykh skhem na udarnoi volne”, Dokl. AN SSSR, 295:2 (1987), 292–297 | MR