Hertzian contact problem: Numerical reduction and volumetric modification
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2195-2211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A technique for the analytical formulation and numerical implementation of an elastic contact model for rigid bodies in the framework of the Hertzian contact problem is described. The normal elastic force and the semiaxes of the contact area are computed so that the problem is sequentially reduced to a scalar transcendental equation depending on complete elliptic integrals of the first and second kinds. Based on the classical solution to the Hertzian contact problem, an invariant volumetric force function is proposed that depends on the geometric characteristics of interpenetration of two undeformed bodies. The normal forces computed using the force function agree with results obtained previously for non-Hertzian contact of elastic bodies. As an example, a ball bearing is used to compare the contact dynamics of elastic bodies simulated in the classical Hertzian model and its volumetric modification.
@article{ZVMMF_2008_48_12_a11,
     author = {E. B. Aleksandrov and V. G. Vil'ke and I. I. Kosenko},
     title = {Hertzian contact problem: {Numerical} reduction and volumetric modification},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2195--2211},
     year = {2008},
     volume = {48},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a11/}
}
TY  - JOUR
AU  - E. B. Aleksandrov
AU  - V. G. Vil'ke
AU  - I. I. Kosenko
TI  - Hertzian contact problem: Numerical reduction and volumetric modification
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2195
EP  - 2211
VL  - 48
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a11/
LA  - ru
ID  - ZVMMF_2008_48_12_a11
ER  - 
%0 Journal Article
%A E. B. Aleksandrov
%A V. G. Vil'ke
%A I. I. Kosenko
%T Hertzian contact problem: Numerical reduction and volumetric modification
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2195-2211
%V 48
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a11/
%G ru
%F ZVMMF_2008_48_12_a11
E. B. Aleksandrov; V. G. Vil'ke; I. I. Kosenko. Hertzian contact problem: Numerical reduction and volumetric modification. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 12, pp. 2195-2211. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_12_a11/

[1] Gonthier Y., Lange C., McPhee J., On implementing a bristle friction model in a contact model based on volumetric properties, Multibody Dynamics 2007, ECCOMAS Thematic Conf., Proc, Politecn. di Milano. Milano, June 25–28, 2007

[2] Hertz H., “Über die Berührung fester elastischer Körper”, J. Reine und Angewandte Math., 92 (1882), 156–171

[3] Hippmann G., “An algorithm for compliant contact between complexly shaped bodies”, Multibody System Dynamics, 12 (2004), 345–362 | DOI | MR | Zbl

[4] Vilke V. G., “O negertsevom kontakte kolesa i relsa”, Zadachi issledovaniya ustoichivosti i stabilizatsii dvizheniya, VTs RAN, M., 2007, 137–157 | MR

[5] Kosenko I. I., “Realizatsiya kompyuternoi modeli dinamiki sistem tverdykh tel s osvobozhdayuschimi svyazyami”, Matem. modelirovanie, 18:12 (2006), 95–106 | MR | Zbl

[6] Lyav A., Matematicheskaya teoriya uprugosti, ONTI NKTP SSSR, M., L., 1935

[7] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VII, Teoriya uprugosti, Nauka, M., 1987 | MR | Zbl

[8] Dzhonson K., Mekhanika kontaktnogo vzaimodeistviya, Mir, M., 1989

[9] Uitteker E. T., Vatson D. N., Kurs sovremennogo analiza. Ch. II. Transtsendentnye funktsii, Fizmatgiz, M., 1963

[10] Khardi G. G.,Littlvud Dzh. E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948

[11] Galin L. A., Kontaktnye zadachi teorii uprugosti i vyazkouprugosti, Nauka, M., 1980 | MR | Zbl

[12] Kalker J. J., Three-dimensional elastic bodies in rolling contact, Kluwer Acad. Publ., Dordrecht etc., 1990 | MR | Zbl

[13] Pascal J. P., “About multi-hertzian-contact hypothesis and equivalent conicity in the case of S1002 and UIC60 analytical wheel/rail profilies”, Vehicle System Dynamics, 22 (1993), 57–78 | DOI

[14] Jaeger J., “Analytical solutions of contact impact problems”, Appl. Mech. Rev., 47:2 (1994), 35–54 | DOI

[15] http://www.modelica.org

[16] http://www.www.dynasim.com

[17] Wensing J. A., On the dynamics of ball bearings, PhD thesis, Univ. Twente, Enschede, 1998

[18] Lee S., Park T. et al., Fatigue life prediction of guideway vehicle components, Proc. ECCOMAS Thematic Conf. on Multibody Dynamics. Milano, Italy, June 25–28. 2007