@article{ZVMMF_2008_48_11_a9,
author = {N. B. Konyukhova and P. M. Lima and M. L. Morgado and M. B. Soloviev},
title = {Bubbles and {Droplets} in {Nonlinear} {Physics} {Models:} {Analysis} and {Numerical} {Simulation} of {Singular} {Nonlinear} {Boundary} {Value} {Problem}},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2019--2023},
year = {2008},
volume = {48},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a9/}
}
TY - JOUR AU - N. B. Konyukhova AU - P. M. Lima AU - M. L. Morgado AU - M. B. Soloviev TI - Bubbles and Droplets in Nonlinear Physics Models: Analysis and Numerical Simulation of Singular Nonlinear Boundary Value Problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 2019 EP - 2023 VL - 48 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a9/ LA - en ID - ZVMMF_2008_48_11_a9 ER -
%0 Journal Article %A N. B. Konyukhova %A P. M. Lima %A M. L. Morgado %A M. B. Soloviev %T Bubbles and Droplets in Nonlinear Physics Models: Analysis and Numerical Simulation of Singular Nonlinear Boundary Value Problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 2019-2023 %V 48 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a9/ %G en %F ZVMMF_2008_48_11_a9
N. B. Konyukhova; P. M. Lima; M. L. Morgado; M. B. Soloviev. Bubbles and Droplets in Nonlinear Physics Models: Analysis and Numerical Simulation of Singular Nonlinear Boundary Value Problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 2019-2023. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a9/
[1] Dell'Isola F., Gouin H., Seppecher P., “Radius and surface tension of microscopic bubbles by second gradient theory”, C. r. Acad. Sci. Paris, 320 (1995), 211–216, Serie IIb
[2] Dell'Isola F., Gouin H., Rotoli G., “Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations”, Eur. J. Mech. B Fluids, 15:4 (1996), 545–568 | MR
[3] Rudakov V. A., Klassicheskie kalibrovochnye polya, Editorial URSS, M., 1999 | MR
[4] Linde A. D., Fizika elementarnykh chastits i inflyatsionnaya kosmologiya, Nauka, M., 1991 | MR
[5] Lima P. M., Konyukhova N. B., Sukov A. I., Chemetov N. V., “Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems”, J. Comput. Appl. Math., 189 (2006), 260–273 | DOI | MR | Zbl
[6] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhteorizdat, M., L., 1950 | Zbl
[7] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 23:3 (1983), 629–645 | MR | Zbl
[8] Konyukhova N. B., “O povedenii reshenii vnutri i vne ustoichivogo mnogoobraziya nekotorykh dvumernykh nelineinykh sistem obyknovennykh differentsialnykh uravnenii”, Matem. zametki, 8:3 (1970), 285–295 | Zbl
[9] Konyukhova N. B., “O predelnom povedenii ogranichennogo resheniya sistemy evolyutsionnykh kvazilineinykh uravnenii s chastnymi proizvodnymi pervogo poryadka pri neogranichennom vozrastanii vremeni”, Differents. ur-niya, 28:9 (1992), 1561–1573 | MR | Zbl
[10] Konyukhova N. B., “Ob ustoichivykh mnogoobraziyakh Lyapunova dlya avtonomnykh sistem nelineinykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 34:10 (1994), 1358–1379 | MR | Zbl
[11] Derrick G. H., “Comments on nonlinear wave equations as models for elementary particles”, J. Math. Phys., 5:9 (1964), 1252–1254 | DOI | MR
[12] Gazzola F., Serrin J., Tang M., “Existence of ground states and free boundary problems for quasilinear elliptic operators”, Advances Different. Equat., 5:1–3 (2000), 1–30 | MR | Zbl