@article{ZVMMF_2008_48_11_a8,
author = {L. M. Skvortsov},
title = {An efficient scheme for the implementation of implicit {Runge{\textendash}Kutta} methods},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2008--2018},
year = {2008},
volume = {48},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a8/}
}
TY - JOUR AU - L. M. Skvortsov TI - An efficient scheme for the implementation of implicit Runge–Kutta methods JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 2008 EP - 2018 VL - 48 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a8/ LA - ru ID - ZVMMF_2008_48_11_a8 ER -
L. M. Skvortsov. An efficient scheme for the implementation of implicit Runge–Kutta methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 2008-2018. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a8/
[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[2] Kulikov G. Yu., “Chislennoe reshenie zadachi Koshi dlya sistemy differentsialno-algebraicheskikh uravnenii s pomoschyu neyavnykh metodov Runge–Kutty s netrivialnym prediktorom”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 68–84 | MR | Zbl
[3] Olsson H., Söderlind G., “Stage value predictors and efficient Newton iterations in implicit Runge–Kutta methods”, SIAM J. Sci. Comput., 20:1 (1998), 185–202 | DOI | MR
[4] Roldan T., Higueras I., “IRK methods for DAE: Starting algorithms”, J. Comput. Appl. Math., 111:1–2 (1999), 77–92 | DOI | MR | Zbl
[5] Higueras I., Roldan T., “Starting algorithms for some DIRK methods”, Numer. Algorithms, 23:4 (2000), 357–369 | DOI | MR | Zbl
[6] Gonzalez-Pinto S., Montijano J. I., Perez-Rodriguez S., “On the starting algorithms for fully implicit Runge–Kutta methods”, BIT, 40:4 (2000), 685–714 | DOI | MR | Zbl
[7] Butcher J. C., Chen D. J. L., “On the implementation of ESIRK methods for stiff IVPs”, Numer. Algorithms, 26:3 (2001), 201–218 | DOI | MR | Zbl
[8] Gonzalez-Pinto S., Montijano J. I., Perez-Rodriguez S., “Variable-order starting algorithms for implicit Runge–Kutta methods on stiff problems”, Appl. Numer. Math., 44:1–2 (2003), 77–94 | DOI | MR | Zbl
[9] Higueras I., Roldan T., “IRK methods for index 2 and 3 DAEs: Starting algorithms”, BIT, 43:1 (2003), 67–92 | DOI | MR | Zbl
[10] Calvo M., Lahurta P., Montijano J. I., “Two-step high order starting values for implicit Runge–Kutta methods”, Adv. Comput. Math., 19:4 (2003), 401–412 | DOI | MR | Zbl
[11] Calvo M. P., Portillo A., “Are high order variable step equistage initializers better than standard starting algorithms?”, J. Comput. Appl. Math., 169:2 (2004), 333–344 | DOI | MR | Zbl
[12] Higueras I., Roldan T., “Starting algorithms for a class of RK methods for index-2 DAEs”, Comput. Math. Applicat., 49:7–8 (2005), 1081–1099 | DOI | MR | Zbl
[13] Hosea M. E., Shampine L. F., “Analysis and implementation of TR-BDF2”, Appl. Numer. Math., 20:1–2 (1996), 21–37 | DOI | MR | Zbl
[14] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17 | MR | Zbl
[15] Alexander R., “Design and implementation of DIRK integrators for stiff systems”, Appl. Numer. Math., 46:1 (2003), 1–17 | MR | Zbl
[16] KværnøA., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR | Zbl
[17] Skvortsov L. M., “Tochnost metodov Runge–Kutty pri reshenii zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1374–1384 | MR | Zbl
[18] Skvortsov L. M., “Diagonalno neyavnye metody Runge–Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222 | MR
[19] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., Reshenie differentsialnykh i differentsialno-algebraicheskikh uravnenii v programmnom komplekse “MVTU” http://model.exponenta.ru/mvtu/20051121.html
[20] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., “Reshenie differentsialnykh uravnenii v programmnom komplekse “MVTU””, Informatsionnye tekhnologii, 2006, no. 5, 10–16 | Zbl
[21] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “Odnoshagovye bezyteratsionnye metody resheniya zhestkikh sistem”, Dokl. AN SSSR, 301:6 (1988), 1310–1314 | MR
[22] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl
[23] Alshin A. B., Alshina E. A., Kalitkin H. H., Koryagina A. B., “Skhemy Rozenbroka s kompleksnymi koeffitsientami dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1392–1414 | MR
[24] Mazzia F., Magherini C., Iavernaro F., Test set for initial value problem solvers http://pitagora.dm.uniba.it/~testset
[25] The code BiMD for solving initial value problems http://web.math.unifi.it/users/brugnano/BiM/BiMD/index_BiMD.htm