An efficient scheme for the implementation of implicit Runge–Kutta methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 2008-2018 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A scheme is proposed for solving nonlinear algebraic equations arising in the implementation of the implicit Runge–Kutta methods. In contrast to the available schemes, not only the starting values of the variables but also those of the derivatives are predicted. This makes it possible to reduce the number of evaluations of the function (the right-hand side) at each implicit stage without significantly reducing the accuracy of integration.
@article{ZVMMF_2008_48_11_a8,
     author = {L. M. Skvortsov},
     title = {An efficient scheme for the implementation of implicit {Runge{\textendash}Kutta} methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2008--2018},
     year = {2008},
     volume = {48},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a8/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - An efficient scheme for the implementation of implicit Runge–Kutta methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2008
EP  - 2018
VL  - 48
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a8/
LA  - ru
ID  - ZVMMF_2008_48_11_a8
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T An efficient scheme for the implementation of implicit Runge–Kutta methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2008-2018
%V 48
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a8/
%G ru
%F ZVMMF_2008_48_11_a8
L. M. Skvortsov. An efficient scheme for the implementation of implicit Runge–Kutta methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 2008-2018. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a8/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[2] Kulikov G. Yu., “Chislennoe reshenie zadachi Koshi dlya sistemy differentsialno-algebraicheskikh uravnenii s pomoschyu neyavnykh metodov Runge–Kutty s netrivialnym prediktorom”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 68–84 | MR | Zbl

[3] Olsson H., Söderlind G., “Stage value predictors and efficient Newton iterations in implicit Runge–Kutta methods”, SIAM J. Sci. Comput., 20:1 (1998), 185–202 | DOI | MR

[4] Roldan T., Higueras I., “IRK methods for DAE: Starting algorithms”, J. Comput. Appl. Math., 111:1–2 (1999), 77–92 | DOI | MR | Zbl

[5] Higueras I., Roldan T., “Starting algorithms for some DIRK methods”, Numer. Algorithms, 23:4 (2000), 357–369 | DOI | MR | Zbl

[6] Gonzalez-Pinto S., Montijano J. I., Perez-Rodriguez S., “On the starting algorithms for fully implicit Runge–Kutta methods”, BIT, 40:4 (2000), 685–714 | DOI | MR | Zbl

[7] Butcher J. C., Chen D. J. L., “On the implementation of ESIRK methods for stiff IVPs”, Numer. Algorithms, 26:3 (2001), 201–218 | DOI | MR | Zbl

[8] Gonzalez-Pinto S., Montijano J. I., Perez-Rodriguez S., “Variable-order starting algorithms for implicit Runge–Kutta methods on stiff problems”, Appl. Numer. Math., 44:1–2 (2003), 77–94 | DOI | MR | Zbl

[9] Higueras I., Roldan T., “IRK methods for index 2 and 3 DAEs: Starting algorithms”, BIT, 43:1 (2003), 67–92 | DOI | MR | Zbl

[10] Calvo M., Lahurta P., Montijano J. I., “Two-step high order starting values for implicit Runge–Kutta methods”, Adv. Comput. Math., 19:4 (2003), 401–412 | DOI | MR | Zbl

[11] Calvo M. P., Portillo A., “Are high order variable step equistage initializers better than standard starting algorithms?”, J. Comput. Appl. Math., 169:2 (2004), 333–344 | DOI | MR | Zbl

[12] Higueras I., Roldan T., “Starting algorithms for a class of RK methods for index-2 DAEs”, Comput. Math. Applicat., 49:7–8 (2005), 1081–1099 | DOI | MR | Zbl

[13] Hosea M. E., Shampine L. F., “Analysis and implementation of TR-BDF2”, Appl. Numer. Math., 20:1–2 (1996), 21–37 | DOI | MR | Zbl

[14] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17 | MR | Zbl

[15] Alexander R., “Design and implementation of DIRK integrators for stiff systems”, Appl. Numer. Math., 46:1 (2003), 1–17 | MR | Zbl

[16] KværnøA., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR | Zbl

[17] Skvortsov L. M., “Tochnost metodov Runge–Kutty pri reshenii zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1374–1384 | MR | Zbl

[18] Skvortsov L. M., “Diagonalno neyavnye metody Runge–Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222 | MR

[19] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., Reshenie differentsialnykh i differentsialno-algebraicheskikh uravnenii v programmnom komplekse “MVTU” http://model.exponenta.ru/mvtu/20051121.html

[20] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., “Reshenie differentsialnykh uravnenii v programmnom komplekse “MVTU””, Informatsionnye tekhnologii, 2006, no. 5, 10–16 | Zbl

[21] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “Odnoshagovye bezyteratsionnye metody resheniya zhestkikh sistem”, Dokl. AN SSSR, 301:6 (1988), 1310–1314 | MR

[22] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[23] Alshin A. B., Alshina E. A., Kalitkin H. H., Koryagina A. B., “Skhemy Rozenbroka s kompleksnymi koeffitsientami dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1392–1414 | MR

[24] Mazzia F., Magherini C., Iavernaro F., Test set for initial value problem solvers http://pitagora.dm.uniba.it/~testset

[25] The code BiMD for solving initial value problems http://web.math.unifi.it/users/brugnano/BiM/BiMD/index_BiMD.htm