Inverse complementarity in a resource deficit model
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 1968-1978 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of inverse complementarity for a parametric family of optimization problems is introduced. This concept is an effective tool for solving complicated applied problems arising in socioeconomic systems. As an example, a nonlinear resource deficit model is constructed in which the equilibrium is characterized by an external market value of resources coinciding with internal objectively determined resource estimates. An extraproximal method is proposed for computing an equilibrium solution. The convergence of the method is proved.
@article{ZVMMF_2008_48_11_a5,
     author = {A. V. Zykina},
     title = {Inverse complementarity in a~resource deficit model},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1968--1978},
     year = {2008},
     volume = {48},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a5/}
}
TY  - JOUR
AU  - A. V. Zykina
TI  - Inverse complementarity in a resource deficit model
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1968
EP  - 1978
VL  - 48
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a5/
LA  - ru
ID  - ZVMMF_2008_48_11_a5
ER  - 
%0 Journal Article
%A A. V. Zykina
%T Inverse complementarity in a resource deficit model
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1968-1978
%V 48
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a5/
%G ru
%F ZVMMF_2008_48_11_a5
A. V. Zykina. Inverse complementarity in a resource deficit model. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 1968-1978. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a5/

[1] Eremin I. I., Mazurov Vl. D., Astafev H. H., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983 | MR

[2] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988 | MR

[3] Eremin I. I., Mazurov Vl. D., Skarin V. D., Khachai M. Yu., Matematicheskie metody v ekonomike, UrO RAN, Ekaterinburg, 2000

[4] Nikaido X., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972

[5] Bulavskii B. A., “Kvazilineinoe programmirovanie i vektornaya optimizatsiya”, Dokl. AN SSSR, 257:4 (1981), 788–791 | MR

[6] Bulavskii B. A., “Obobschennye resheniya i regulyarizatsiya sistem neravenstv”, Vychisl. metody lineinoi algebry, Tr. In-ta matem., 6, SO AN SSSR, Novosibirsk, 1985, 161–174 | MR

[7] Golshtein E. G., Tretyakov H. B., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR

[8] Antipin A. C., “O ravnovesnoi modeli defitsita resursov”, Nelineinaya dinamika i upravlenie, Vyp. 5, 2007, 241–250

[9] Konnoe I. V., “Kombinirovannye relaksatsionnye metody dlya poiska tochek ravnovesiya i resheniya smezhnykh zadach”, Izv. vuzov. Matematika, 1993, no. 2, 46–53

[10] Zykina A. B., “Obratnaya zadacha dlya parametricheskoi nelineinoi zadachi dopolnitelnosti”, Prikl. matem. i informatsionnye sistemy, Omsk, 2005, 27–35

[11] Zykina A. B., “Obratnaya zadacha dlya lineinoi zadachi dopolnitelnosti”, Omskii nauchn. vestn., 2005, no. 3(32), 77–80

[12] Zykina A. B., “O reshenii odnoi obratnoi zadachi”, Ros. konf. “Diskretnyi analiz i issledovanie operatsii”, Matem. konf. (Novosibirsk, 28 iyunya–2 iyulya 2004), IM SO RAN, Novosibirsk, 2004, 166

[13] Zykina A. B., “Obratnaya zadacha optimizatsii i zadacha Lagranzha”, Omskii nauchn. vestn., 2005, no. 2(31), 81–84

[14] Antipin A. C., “Ekstrapolyatsionnye metody vychisleniya sedlovoi tochki funktsii Lagranzha i ikh primenenie k zadacham s blochno-separabelnoi strukturoi”, Zh. vychisl. matem. i matem. fiz., 26:1 (1986), 150–151

[15] Antipin A. C., “Upravlyaemye proksimalnye differentsialnye sistemy dlya resheniya sedlovykh zadach”, Differents. ur-niya, 28:11 (1992), 1846–1861 | MR | Zbl

[16] Antipin A. C., “O skhodimosti i otsenkakh skorosti skhodimosti proksimalnykh metodov k nepodvizhnym tochkam ekstremalnykh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–704 | MR | Zbl

[17] Antipin A. C., “Ravnovesnoe programmirovanie: proksimalnye metody”, Zh. vychisl. matem. i matem. fiz., 37:11 (1997), 1327–1339 | MR | Zbl

[18] Antipin A. C., “Ravnovesnoe programmirovanie: metody gradientnogo tipa”, Avtomatika i telemekhan., 1997, no. 8, 125–137 | MR | Zbl

[19] Antipin A. C., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 1969–1990 | MR | Zbl

[20] Antipin A. C., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach so svyazannymi peremennymi”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2102–2111 | MR | Zbl

[21] Antipin A. C., “Mnogokriterialnoe ravnovesnoe programmirovanie: ekstraproksimalnye metody”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 1998–2013 | MR