Asymptotic method for solving the time-optimal control problem for a nonlinear singularly perturbed system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 1942-1951 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The time-optimal control problem for a nonlinear singularly perturbed system with multidimensional controls bounded in the Euclidean norm is considered. An algorithm for constructing asymptotic approximations to its solution is proposed. The main advantage of the algorithm is that the original optimal control problem decomposes into two unperturbed problems of lower dimensions.
@article{ZVMMF_2008_48_11_a3,
     author = {Ya. O. Grudo and A. I. Kalinin},
     title = {Asymptotic method for solving the time-optimal control problem for a~nonlinear singularly perturbed system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1942--1951},
     year = {2008},
     volume = {48},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a3/}
}
TY  - JOUR
AU  - Ya. O. Grudo
AU  - A. I. Kalinin
TI  - Asymptotic method for solving the time-optimal control problem for a nonlinear singularly perturbed system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1942
EP  - 1951
VL  - 48
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a3/
LA  - ru
ID  - ZVMMF_2008_48_11_a3
ER  - 
%0 Journal Article
%A Ya. O. Grudo
%A A. I. Kalinin
%T Asymptotic method for solving the time-optimal control problem for a nonlinear singularly perturbed system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1942-1951
%V 48
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a3/
%G ru
%F ZVMMF_2008_48_11_a3
Ya. O. Grudo; A. I. Kalinin. Asymptotic method for solving the time-optimal control problem for a nonlinear singularly perturbed system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 1942-1951. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a3/

[1] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhan., 2006, no. 1, 3–51 | MR | Zbl

[2] Rakitskii Yu. V., Ustinov S. M., Chernorutskii I. G., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979 | MR

[3] Pontryagin L. C., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR | Zbl

[4] Carlson D. A., Haurie F., Infinite horizon optimal control, Lect. Notes in Econom. and Math. Systems, 290, 1987 | Zbl

[5] Esipov V. A., “Asimptotika resheniya obschei kraevoi zadachi dlya singulyarno vozmuschennykh sistem obyknovennykh differentsialnykh uravnenii uslovno ustoichivogo tipa”, Differents. ur-niya, 11:11 (1975), 1957–1966

[6] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[7] Gabasov R., Kirillova F. M., Konstruktivnye metody optimizatsii, Ch. 2, Universitetskoe, Minsk, 1984 | MR

[8] Chernousko F. L., Akulenko L. D., Sokolov B. N., Upravlenie kolebaniyami, Nauka, M., 1980

[9] Kalinin A. I., Semenov K. V., “Asimptoticheskii metod optimizatsii lineinykh singulyarno vozmuschennykh sistem s mnogomernymi upravleniyami”, Zh. vychisl. matem. i matem. fiz., 44:3 (2004), 432–443 | MR | Zbl