An optimal regularizing algorithm for the recovery of functionals in linear inverse problems with sourcewise represented solution
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 1933-1941 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear operator equation with a sourcewise represented exact solution is solved approximately. To this end, the method of extending compacts developed in an earlier work is applied. Based on this method, a new algorithm is proposed for recovering the value of a linear functional at the solution of the linear operator equation. This algorithm is shown to be an optimal regularizing one.
@article{ZVMMF_2008_48_11_a2,
     author = {A. V. Bayev},
     title = {An optimal regularizing algorithm for the recovery of functionals in linear inverse problems with sourcewise represented solution},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1933--1941},
     year = {2008},
     volume = {48},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a2/}
}
TY  - JOUR
AU  - A. V. Bayev
TI  - An optimal regularizing algorithm for the recovery of functionals in linear inverse problems with sourcewise represented solution
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1933
EP  - 1941
VL  - 48
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a2/
LA  - ru
ID  - ZVMMF_2008_48_11_a2
ER  - 
%0 Journal Article
%A A. V. Bayev
%T An optimal regularizing algorithm for the recovery of functionals in linear inverse problems with sourcewise represented solution
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1933-1941
%V 48
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a2/
%G ru
%F ZVMMF_2008_48_11_a2
A. V. Bayev. An optimal regularizing algorithm for the recovery of functionals in linear inverse problems with sourcewise represented solution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 1933-1941. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a2/

[1] Bakushinskii A. B., Goncharskii A. B., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989

[2] Morozov V. A., Regulyarnye metody resheniya nekorrektnykh zadach, Nauka, M., 1987 | MR

[3] Tikhonov A. N., Goncharskii A. B., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR

[4] Dombrovskaya I. N., Ivanov V. K., “K teorii nekotorykh lineinykh uravnenii v abstraktnykh banakhovykh prostranstvakh”, Sibirskii matem. zhurnal, 6:3 (1965), 499–508

[5] Yagola A. G., Dorofeev K. Yu., “Sourcewise representation and a posteriori error estimates for ill-posed problems”, Fields Inst. Communs: Operator Theory and Appl., 25 (2000), 543–550 | MR | Zbl

[6] Baev A. B., “Primenenie printsipa Lagranzha v zadache optimalnogo obrascheniya lineinogo operatora v sluchae istokoobraznoi predstavimosti tochnogo resheniya operatornogo uravneniya”, Vychisl. metody i programmirovanie, 8:1 (2007), 20–28 http://www.srcc.msu.su/num-meth

[7] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[8] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Matem. zametki, 50:6 (1991), 85–93 | MR

[9] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962