Dynamic adaptation method in gasdynamic simulations with nonlinear heat conduction
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 2067-2080 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A dynamic adaptation method is applied to gas dynamics problems with nonlinear heat conduction. The adaptation function is determined by the condition that the energy equation is quasi-stationary and the grid point distribution is quasi-uniform. The dynamic adaptation method with the adaptation function thus determined and a front-tracking technique are used to solve the model problem of a piston moving in a heat-conducting gas. It is shown that the results significantly depend on the thermal conductivity chosen. The numerical results obtained on a 40-node grid are compared with self-similar solutions to this problem.
@article{ZVMMF_2008_48_11_a14,
     author = {P. V. Breslavskiy and V. I. Mazhukin},
     title = {Dynamic adaptation method in gasdynamic simulations with nonlinear heat conduction},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2067--2080},
     year = {2008},
     volume = {48},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a14/}
}
TY  - JOUR
AU  - P. V. Breslavskiy
AU  - V. I. Mazhukin
TI  - Dynamic adaptation method in gasdynamic simulations with nonlinear heat conduction
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2067
EP  - 2080
VL  - 48
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a14/
LA  - ru
ID  - ZVMMF_2008_48_11_a14
ER  - 
%0 Journal Article
%A P. V. Breslavskiy
%A V. I. Mazhukin
%T Dynamic adaptation method in gasdynamic simulations with nonlinear heat conduction
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2067-2080
%V 48
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a14/
%G ru
%F ZVMMF_2008_48_11_a14
P. V. Breslavskiy; V. I. Mazhukin. Dynamic adaptation method in gasdynamic simulations with nonlinear heat conduction. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 2067-2080. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a14/

[1] Zeldovich Ya. B., Kompaneets A. C., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, K semidesyatiletiyu akademika A. F. Ioffe, Izd-vo AN SSSR, M., 1950, 61–71

[2] Barenblatt G. I., Vishik I. M., “O konechnoi skorosti rasprostraneniya v zadachakh nestatsionarnoi filtratsii zhidkosti i gaza”, Prikl. matem. i mekhan., 20:3 (1956), 411–417 | MR | Zbl

[3] Samarskii A. A., Sobol I. M., “Primery chislennogo rascheta temperaturnykh voln”, Zh. vychisl. matem. i matem. fiz., 3:4 (1963), 703–719 | MR

[4] Volosevich P. P., Kurdyumov S. P., Busurina L. N., Krus V. P., “Reshenie odnomernoi ploskoi zadachi o dvizhenii porshnya v idealnom teploprovodnom gaze”, Zh. vychisl. matem. i matem. fiz., 3:1 (1963), 159–169 | Zbl

[5] Samarskii A. A., Kurdyumov S. P., Volosevich P. P., “Beguschie volny v srede s nelineinoi teploprovodnostyu”, Zh. vychisl. matem. i matem. fiz., 5:2 (1965), 199–217 | MR

[6] Volosevich P. P., Kurdyumov S. P., Levanov E. I., “Razlichnye rezhimy teplovogo nagreva pri vzaimodeistvii moschnykh potokov izlucheniya s veschestvom”, Prikl. mekhan. i tekhn. fiz., 1972, no. 5, 41–48

[7] Korobeinikov V. P., “O rasprostranenii silnoi sfericheskoi vzryvnoi volny v teploprovodnom gaze”, Dokl. AN SSSR, 113:5 (1954), 1006–1009 | MR

[8] Volosevich P. P., Levakov E. I., Avtomodelnye resheniya zadach gazovoi dinamiki i teploperenosa, MFTI, M., 1997

[9] Marshak R., “An influence of the radiation on the behavior of the shock waves”, Phys. Fluids, 1958, no. 1, 24–29 | DOI | MR | Zbl

[10] Breslavskii P. V., Mazhukin V. I., “Dinamicheski adaptiruyuschiesya setki dlya vzaimodeistvuyuschikh razryvnykh reshenii”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 717–737 | MR | Zbl

[11] Breslavsky P. V., Mazhukin V. I., “Simulation of interacting discontinuous solutions on dynamically adaptive grids”, Comput. Meth. Appl. Math., 7:2 (2007), 103–117 | MR | Zbl

[12] Mazhukin A. B., Mazhukin V. I., “Dinamicheskaya adaptatsiya v parabolicheskikh uravneniyakh”, Zh. vychisl. matem. i matem. fiz., 47:11 (2007), 1913–1936 | MR

[13] Breslavskii P. V., Mazhukin V. I., “Metod dinamicheskoi adaptatsii v zadachakh gazovoi dinamiki”, Matem. modelirovanie, 7:12 (1995), 48–78 | MR

[14] Mazhukin V. I., Samarskii A. A., Shapranov A. V., “Metod dinamicheskoi adaptatsii v probleme Byurgersa”, Dokl. RAN, 333:2 (1993), 165–169 | MR | Zbl

[15] Sedov L. I., Metody podobiya i razmernostei v mekhanike, Nauka, M., 1988 | Zbl