First-order partial differential equations with large high-frequency terms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 2024-2041 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of first-order semilinear partial differential equations with terms that oscillate at a frequency $\omega\gg1$ in a single variable and are proportional to $\sqrt\omega$ are considered. The Krylov–Bogolyubov–Mitropol'skii averaging method is substantiated for such equations. Based on the two-scale expansion method, an algorithm for constructing complete asymptotics of solutions is proposed and justified.
@article{ZVMMF_2008_48_11_a10,
     author = {A. K. Kapikyan and V. B. Levenshtam},
     title = {First-order partial differential equations with large high-frequency terms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2024--2041},
     year = {2008},
     volume = {48},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a10/}
}
TY  - JOUR
AU  - A. K. Kapikyan
AU  - V. B. Levenshtam
TI  - First-order partial differential equations with large high-frequency terms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 2024
EP  - 2041
VL  - 48
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a10/
LA  - ru
ID  - ZVMMF_2008_48_11_a10
ER  - 
%0 Journal Article
%A A. K. Kapikyan
%A V. B. Levenshtam
%T First-order partial differential equations with large high-frequency terms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 2024-2041
%V 48
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a10/
%G ru
%F ZVMMF_2008_48_11_a10
A. K. Kapikyan; V. B. Levenshtam. First-order partial differential equations with large high-frequency terms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 11, pp. 2024-2041. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_11_a10/

[1] Bogolyubov H. H., O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Lvov, 1945

[2] Bogolyubov H. H., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[3] Basistaya D. A., Levenshtam V. B., “Asimptotika reshenii obyknovennykh differentsialnykh uravnenii s bolshimi vysokochastotnymi slagaemymi”, Izv. vuzov. Severo-Kavkazskii region. Estestv. nauki, 2004, Spets. vypusk. Matem. i mekhan. sploshnoi sredy, 46–48 | Zbl

[4] Khoma G. P., “Teorema ob usrednenii dlya giperbolicheskikh sistem pervogo poryadka”, Ukr. matem. zhurnal, 22:5 (1970), 699–704 | Zbl

[5] Bogolyubov H. H., “Teoriya vozmuschenii v nelineinoi mekhanike”, Sb. Instituta stroit. mekhan. AN USSR, Vyp. 4, 1950, 9–34

[6] Kapitsa H. L., “Dinamicheskaya ustoichivost mayatnika pri koleblyuscheisya tochke podvesa”, Zh. eksperim. i teor. fiz., 21:5 (1951), 588–599

[7] Yudovich V. I., “Vibrodinamika sistem so svyazyami”, Dokl. RAN, 354:5 (1997), 622–624 | MR

[8] Yudovich V. I., “Periodicheskie differentsialnye uravneniya s samosopryazhennym operatorom monodromii”, Matem. sb., 192:3 (2001), 137–160 | MR | Zbl

[9] Levenshtam V. B., “Asimptoticheskoe integrirovanie differentsialnykh uravnenii, soderzhaschikh bystroostsilliruyuschie slagaemye s bolshimi amplitudami”, Differents. ur-niya, 41:6 (2005), 761–770 ; II 8, 1084–1091 | MR | Zbl | MR | Zbl

[10] Levenshtam V. B., “Obosnovanie metoda usredneniya dlya parabolicheskikh uravnenii, soderzhaschikh bystroostsilliruyuschie slagaemye s bolshimi amplitudami”, Izv. RAN. Ser. matem., 70:2 (2006), 25–56 | MR | Zbl

[11] Demidovich B. N., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR