Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10

Voir la notice de l'article provenant de la source Math-Net.Ru

The third-order nonlinear dispersion PDE, as the key model, \begin{equation} u_t=(uu_x)_{xx}\quad\text{in}\quad\mathbb R\times\mathbb R_+. \label{1} \end{equation} is studied. Two Riemann's problems for (1) with the initial data $S_{\mp}(x)=\mp\operatorname{sign}{x}$ create shock ($u(x,t)\equiv S_{-}(x)$) and smooth rarefaction (for the data $S_{+}$ ) waves (see [16]). The concept of "$\delta$-entropy" solutions and others are developed for establishing the existence and uniqueness for (1) by using stable smooth $\delta$-deformations of shock-type solutions. These are analogous to entropy theory for scalar conservation laws such as $u_t+uu_x=0$, which were developed by Oleinik and Kruzhkov (in $x\in\mathbb R^N$) in the 1950s–1960s. The Rosenau–Hyman $K(2,2)$ (compacton) equation $$ u_t=(uu_x)_{xx}+4uu_x, $$ which has a special importance for applications, is studied. Compactons as compactly supported travelling wave solutions are shown to be $\delta$-entropy. Shock and rarefaction waves are discussed for other NDEs such as $$ u_t=(u^2u_x)_{xx},\quad u_{tt}=(uu_x)_{xx},\quad u_{tt}=uu_x,\quad u_{ttt}=(uu_x)_{xx},\quad u_t=(uu_x)_{xxxxxx},\quad \text{ets.} $$
@article{ZVMMF_2008_48_10_a7,
     author = {V. A. Galaktionov},
     title = {Nonlinear dispersion equations: {Smooth} deformations, compactions, and extensions to higher orders},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1859},
     publisher = {mathdoc},
     volume = {48},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a7/}
}
TY  - JOUR
AU  - V. A. Galaktionov
TI  - Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1859
VL  - 48
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a7/
LA  - ru
ID  - ZVMMF_2008_48_10_a7
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%T Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1859
%V 48
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a7/
%G ru
%F ZVMMF_2008_48_10_a7
V. A. Galaktionov. Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a7/