Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10
Voir la notice de l'article provenant de la source Math-Net.Ru
The third-order nonlinear dispersion PDE, as the key model, \begin{equation} u_t=(uu_x)_{xx}\quad\text{in}\quad\mathbb R\times\mathbb R_+. \label{1} \end{equation} is studied. Two Riemann's problems for (1) with the initial data $S_{\mp}(x)=\mp\operatorname{sign}{x}$ create shock ($u(x,t)\equiv S_{-}(x)$) and smooth rarefaction (for the data $S_{+}$ ) waves (see [16]). The concept of "$\delta$-entropy" solutions and others are developed for establishing the existence and uniqueness for (1) by using stable smooth $\delta$-deformations of shock-type solutions. These are analogous to entropy theory for scalar conservation laws such as $u_t+uu_x=0$, which were developed by Oleinik and Kruzhkov (in $x\in\mathbb R^N$) in the 1950s–1960s. The Rosenau–Hyman $K(2,2)$ (compacton) equation $$ u_t=(uu_x)_{xx}+4uu_x, $$ which has a special importance for applications, is studied. Compactons as compactly supported travelling wave solutions are shown to be $\delta$-entropy. Shock and rarefaction waves are discussed for other NDEs such as $$ u_t=(u^2u_x)_{xx},\quad u_{tt}=(uu_x)_{xx},\quad u_{tt}=uu_x,\quad u_{ttt}=(uu_x)_{xx},\quad u_t=(uu_x)_{xxxxxx},\quad \text{ets.} $$
@article{ZVMMF_2008_48_10_a7,
author = {V. A. Galaktionov},
title = {Nonlinear dispersion equations: {Smooth} deformations, compactions, and extensions to higher orders},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1859},
publisher = {mathdoc},
volume = {48},
number = {10},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a7/}
}
TY - JOUR AU - V. A. Galaktionov TI - Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1859 VL - 48 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a7/ LA - ru ID - ZVMMF_2008_48_10_a7 ER -
%0 Journal Article %A V. A. Galaktionov %T Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1859 %V 48 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a7/ %G ru %F ZVMMF_2008_48_10_a7
V. A. Galaktionov. Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a7/