Asymptotics of eigenvalues of the Dirichlet boundary value problem for the Lame operator in a three-dimensional domain with a small cavity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1847-1858 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for the Lame operator in a bounded three-dimensional domain with a small cavity is studied. The domain is filled with an elastic homogeneous isotropic medium that is clamped at the boundary, which corresponds to the Dirichlet boundary condition. The leading term of an asymptotic expansion for the eigenvalue is constructed in the case of the Dirichlet limit problem. The asymptotic expansion is constructed in powers of a small parameter $\varepsilon$ that is the diameter of the cavity.
@article{ZVMMF_2008_48_10_a6,
     author = {D. B. Davletov},
     title = {Asymptotics of eigenvalues of the {Dirichlet} boundary value problem for the {Lame} operator in a~three-dimensional domain with a~small cavity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1847--1858},
     year = {2008},
     volume = {48},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a6/}
}
TY  - JOUR
AU  - D. B. Davletov
TI  - Asymptotics of eigenvalues of the Dirichlet boundary value problem for the Lame operator in a three-dimensional domain with a small cavity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1847
EP  - 1858
VL  - 48
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a6/
LA  - ru
ID  - ZVMMF_2008_48_10_a6
ER  - 
%0 Journal Article
%A D. B. Davletov
%T Asymptotics of eigenvalues of the Dirichlet boundary value problem for the Lame operator in a three-dimensional domain with a small cavity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1847-1858
%V 48
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a6/
%G ru
%F ZVMMF_2008_48_10_a6
D. B. Davletov. Asymptotics of eigenvalues of the Dirichlet boundary value problem for the Lame operator in a three-dimensional domain with a small cavity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1847-1858. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a6/

[1] Oleinik O. A., Iosifyan G. A., Shamaev A. C., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990

[2] Gadylshin P. P., “Asimptotika sobstvennogo znacheniya singulyarno vozmuschennoi ellipticheskoi zadachi s malym parametrom v granichnom uslovii”, Differents. ur-niya, 22 (1986), 640–652 | MR

[3] Gadylshin P. P., “Spektr ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii granichnykh uslovii”, Asimptotich. svoistva reshenii differents. ur-nii, Sb. nauchn. trudov, BNTs UrO AN SSSR, Ufa, 1988, 3–15

[4] Gadylshin P. P., “Rasscheplenie kratnogo sobstvennogo znacheniya zadachi Dirikhle dlya operatora Laplasa pri singulyarnom vozmuschenii granichnogo usloviya”, Matem. zametki, 52:4 (1992), 42–55 | MR

[5] Kamotskii I. V., Nazarov S. A., “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Tr. S.-Pb. Matem. ob-va, 6, 1998, 151–212 | MR

[6] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Fizmatgiz, M., 1989 | MR

[7] Kupradze V. D., Metody potentsiala v teorii uprugosti, Fizmatgiz, M., 1963 | MR

[8] Kupradze V. D., Gegelia T. G., Basheleishvili M. O., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti, Tbilissk. un-t, Tbilisi, 1968 | MR | Zbl

[9] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[10] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[11] Gadylshin P. P., “O sobstvennykh chastotakh tel s tonkimi otrostkami. I. Skhodimost i otsenki”, Matem. zametki, 54:6 (1993), 10–21 | MR