Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1819-1846 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Shock waves and blowup arising in third-order nonlinear dispersive equations are studied. The underlying model is the equation in \begin{equation} u_t=(uu_x)_{xx}\quad\text{in}\quad\mathbb R\times\mathbb R_+. \label{1} \end{equation} It is shown that two basic Riemann problems for Eq. (1) with the initial data $$ S_{\pm}(x)=\mp\operatorname{sign}{x} $$ exhibit a shock wave ($u(x,t)\equiv S_{-}(x)$) and a smooth rarefaction wave (for $S_{+}$), respectively. Various blowing-up and global similarity solutions to Eq. (0.1) are constructed that demonstrate the fine structure of shock and rarefaction waves. A technique based on eigenfunctions and the nonlinear capacity is developed to prove the blowup of solutions. The analysis of Eq. (1) resembles the entropy theory of scalar conservation laws of the form $u_t+uu_x=0$, which was developed by O. A. Oleinik and S. N. Kruzhkov (for equations in $x\in\mathbb R^N$ ) in the 1950s–1960s.
@article{ZVMMF_2008_48_10_a5,
     author = {V. A. Galaktionov and S. I. Pokhozhaev},
     title = {Third-order nonlinear dispersive equations: {Shocks,} rarefaction, and blowup waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1819--1846},
     year = {2008},
     volume = {48},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/}
}
TY  - JOUR
AU  - V. A. Galaktionov
AU  - S. I. Pokhozhaev
TI  - Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1819
EP  - 1846
VL  - 48
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/
LA  - ru
ID  - ZVMMF_2008_48_10_a5
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%A S. I. Pokhozhaev
%T Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1819-1846
%V 48
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/
%G ru
%F ZVMMF_2008_48_10_a5
V. A. Galaktionov; S. I. Pokhozhaev. Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1819-1846. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/

[1] Bona J. L., Weissler F. B., “Blow-up of spatially periodic complex-valued solutions of nonlinear dispersive equations”, Indiana Univ. Math. J., 50 (2001), 759–782 | DOI | MR | Zbl

[2] Bressan A., Hyperbolic systems of conservation laws. The one dimensional Cauchy problem, Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[3] Clarkson P. A., Fokas A. S., Ablowitz M., “Hodograph transformations of linearizable partial differential equations”, SIAM J. Appl. Math., 49 (1989), 1188–1209 | DOI | MR | Zbl

[4] Coclite G. M., Karlsen K. H., “On the well-posedness of the Degasperis–Procesi equation”, J. Funct. Analys., 233 (2006), 60–91 | DOI | MR | Zbl

[5] Craig W., Kappeler T., Strauss W., “Gain of regularity for equations of KdV type”, Ann. Inst. H. Poincaré, 9 (1992), 147–186 | MR | Zbl

[6] Dafermos C., Hyperbolic conservation laws in continuum physics, Springer, Berlin, 1999 | MR

[7] Dey B., “Compacton solutions for a class of two parameter generalized odd-order Korteweg–de Vries equations”, Phys. Rev. E, 57 (1998), 4733–4738 | DOI | MR

[8] Galaktionov V. A., Geometric sturmian theory of nonlinear parabolic equations and applications, Chapman Hall/CRC, Boca Raton, Florida, 2004 | MR | Zbl

[9] Galaktionov V. A., “Sturmian nodal set analysis for higher-order parabolic equations and applications”, Advanced. Different. Equat., 12 (2007), 669–720 | MR | Zbl

[10] Galaktionov V. A., “On higher-order viscosity approximations of odd-order nonlinear PDEs”, J. Engng Math., 60:2 (2008), 173–208 | DOI | MR | Zbl

[11] Galaktionov V. A., “Shock waves and compactons for fifth-order nonlinear dispersion equations”, Europ. J. Appl. Math., submitted

[12] Galaktionov V. A., Pohozaev S. I., “Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators”, Indiana Univ. Math. J., 51 (2002), 1321–1338 | DOI | MR | Zbl

[13] Galaktionov B. A., Pokhozhaev S. I., “Razrushenie reshenii dlya nelineinykh nachalno-kraevykh zadach”, Dokl. RAN, 412 (2007), 444–447 | MR

[14] Galaktionov V. A., “Nelineinye uravneniya dispersii: gladkie deformatsii, kompaktony i obobscheniya na sluchai vysokogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1859 | MR | Zbl

[15] Galaktionov V. A., Svirshchevskii S. R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Chapman Hall/CRC, Boca Raton, Florida, 2007 | MR | Zbl

[16] Galaktionov V. A., Vazquez J. L., A stability technique for evolution partial differential equations. A dynamical systems approach, Birkhäuser, Boston, Berlin, 2004 | MR | Zbl

[17] Gelfand I. M., “Nekotorye problemy teorii kvazilineinykh uravnenii”, Uspekhi matem. nauk, 14 (1959), 87–158

[18] Hyman J. M., Rosenau P., “Pulsating multiplet solutions of quintic wave equations”, Phys. D, 123 (1998), 502–512 | DOI | MR | Zbl

[19] Inc M., “New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein–Gordon equations”, Chaos, Solitons and Fractals, 33 (2007), 1275–1284 | DOI | MR | Zbl

[20] Kawamoto S., “An exact transformation from the Harry Dym equation to the modified KdV equation”, J. Phys. Soc. Japan, 54 (1985), 2055–2056 | DOI | MR

[21] Kruzhkov C. H., “Kvazilineinye uravneniya pervogo poryadka s neskolkimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | Zbl

[22] Lions J. L., Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Gauthier-Villars, Paris, 1969 | MR | Zbl

[23] Lunardi A., Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser, Basel, Berlin, 1995 | MR | Zbl

[24] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, Uspekhi matem. nauk, 12 (1957), 3–73 | MR

[25] Oleinik O. A., “Edinstvennost i ustoichivost obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, Uspekhi matem. nauk, 14 (1959), 165–170 | MR

[26] Porubov A. V., Velarde M. G., “Strain kinks in an elastic rod embedded in a viscoelastic medium”, Wave Motion, 35 (2002), 189–204 | DOI | MR | Zbl

[27] Rosenau P., “Nonlinear dispersion and compact structures”, Phys. Rev. Letts, 73 (1994), 1737–1741 | DOI | MR | Zbl

[28] Rosenau P., “On solitons, compactons, and Lagrange maps”, Phys. Letts. A, 211 (1996), 265–275 | DOI | MR | Zbl

[29] Rosenau P., “On a class of nonlinear dispersive-dissipative interactions”, Phys. D, 123 (1998), 525–546 | DOI | MR | Zbl

[30] Rosenau P., “Compact and noncompact dispersive patterns”, Phys. Letts. A, 275 (2000), 193–203 | DOI | MR | Zbl

[31] Rosenau P., Hyman J. M., “Compactons: solitons with finite wavelength”, Phys. Rev. Letts, 70 (1993), 564–567 | DOI | Zbl

[32] Rosenau P., Kamin S., “Thermal waves in an absorbing and convecting medium”, Phys. D, 8 (1983), 273–283 | DOI | MR | Zbl

[33] Rosenau P., Levy D., “Compactons in a class of nonlinearly quintic equations”, Phys. Letts. A, 252 (1999), 297–306 | DOI | MR | Zbl

[34] Shen J.,Xu W., Li W., “Bifurcation of travelling wave solutions in a new integrable equation with peakon and compactons”, Chaos, Solitons and Fractals, 27 (2006), 413–425 | DOI | MR | Zbl

[35] Smoller J., Shock waves and reaction-diffusion equations, Springer, New York, 1983 | MR | Zbl

[36] Takuwa H., “Microlocal analytic smoothing effects for operators of real principal type”, Osaka J. Math., 43 (2006), 13–62 | MR | Zbl

[37] Yan Z., “Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation. II. Solitary pattern solutions”, Chaos, Solitons and Fractals, 18 (2003), 869–880 | DOI | MR | Zbl

[38] Yao R.-X.,Li Z.-B., “Conservation laws and new exact solutions for the generalized seventh order KdV equation”, Chaos, Solitons and Fractals, 20 (2004), 259–266 | DOI | MR | Zbl