Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1819-1846
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Shock waves and blowup arising in third-order nonlinear dispersive equations are studied. The underlying model is the equation in \begin{equation} u_t=(uu_x)_{xx}\quad\text{in}\quad\mathbb R\times\mathbb R_+. \label{1} \end{equation} It is shown that two basic Riemann problems for Eq. (1) with the initial data $$ S_{\pm}(x)=\mp\operatorname{sign}{x} $$ exhibit a shock wave ($u(x,t)\equiv S_{-}(x)$) and a smooth rarefaction wave (for $S_{+}$), respectively. Various blowing-up and global similarity solutions to Eq. (0.1) are constructed that demonstrate the fine structure of shock and rarefaction waves. A technique based on eigenfunctions and the nonlinear capacity is developed to prove the blowup of solutions. The analysis of Eq. (1) resembles the entropy theory of scalar conservation laws of the form $u_t+uu_x=0$, which was developed by O. A. Oleinik and S. N. Kruzhkov (for equations in $x\in\mathbb R^N$ ) in the 1950s–1960s.
            
            
            
          
        
      @article{ZVMMF_2008_48_10_a5,
     author = {V. A. Galaktionov and S. I. Pokhozhaev},
     title = {Third-order nonlinear dispersive equations: {Shocks,} rarefaction, and blowup waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1819--1846},
     publisher = {mathdoc},
     volume = {48},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/}
}
                      
                      
                    TY - JOUR AU - V. A. Galaktionov AU - S. I. Pokhozhaev TI - Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1819 EP - 1846 VL - 48 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/ LA - ru ID - ZVMMF_2008_48_10_a5 ER -
%0 Journal Article %A V. A. Galaktionov %A S. I. Pokhozhaev %T Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1819-1846 %V 48 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/ %G ru %F ZVMMF_2008_48_10_a5
V. A. Galaktionov; S. I. Pokhozhaev. Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1819-1846. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/
