@article{ZVMMF_2008_48_10_a5,
author = {V. A. Galaktionov and S. I. Pokhozhaev},
title = {Third-order nonlinear dispersive equations: {Shocks,} rarefaction, and blowup waves},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1819--1846},
year = {2008},
volume = {48},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/}
}
TY - JOUR AU - V. A. Galaktionov AU - S. I. Pokhozhaev TI - Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1819 EP - 1846 VL - 48 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/ LA - ru ID - ZVMMF_2008_48_10_a5 ER -
%0 Journal Article %A V. A. Galaktionov %A S. I. Pokhozhaev %T Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1819-1846 %V 48 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/ %G ru %F ZVMMF_2008_48_10_a5
V. A. Galaktionov; S. I. Pokhozhaev. Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1819-1846. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/
[1] Bona J. L., Weissler F. B., “Blow-up of spatially periodic complex-valued solutions of nonlinear dispersive equations”, Indiana Univ. Math. J., 50 (2001), 759–782 | DOI | MR | Zbl
[2] Bressan A., Hyperbolic systems of conservation laws. The one dimensional Cauchy problem, Oxford Univ. Press, Oxford, 2000 | MR | Zbl
[3] Clarkson P. A., Fokas A. S., Ablowitz M., “Hodograph transformations of linearizable partial differential equations”, SIAM J. Appl. Math., 49 (1989), 1188–1209 | DOI | MR | Zbl
[4] Coclite G. M., Karlsen K. H., “On the well-posedness of the Degasperis–Procesi equation”, J. Funct. Analys., 233 (2006), 60–91 | DOI | MR | Zbl
[5] Craig W., Kappeler T., Strauss W., “Gain of regularity for equations of KdV type”, Ann. Inst. H. Poincaré, 9 (1992), 147–186 | MR | Zbl
[6] Dafermos C., Hyperbolic conservation laws in continuum physics, Springer, Berlin, 1999 | MR
[7] Dey B., “Compacton solutions for a class of two parameter generalized odd-order Korteweg–de Vries equations”, Phys. Rev. E, 57 (1998), 4733–4738 | DOI | MR
[8] Galaktionov V. A., Geometric sturmian theory of nonlinear parabolic equations and applications, Chapman Hall/CRC, Boca Raton, Florida, 2004 | MR | Zbl
[9] Galaktionov V. A., “Sturmian nodal set analysis for higher-order parabolic equations and applications”, Advanced. Different. Equat., 12 (2007), 669–720 | MR | Zbl
[10] Galaktionov V. A., “On higher-order viscosity approximations of odd-order nonlinear PDEs”, J. Engng Math., 60:2 (2008), 173–208 | DOI | MR | Zbl
[11] Galaktionov V. A., “Shock waves and compactons for fifth-order nonlinear dispersion equations”, Europ. J. Appl. Math., submitted
[12] Galaktionov V. A., Pohozaev S. I., “Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators”, Indiana Univ. Math. J., 51 (2002), 1321–1338 | DOI | MR | Zbl
[13] Galaktionov B. A., Pokhozhaev S. I., “Razrushenie reshenii dlya nelineinykh nachalno-kraevykh zadach”, Dokl. RAN, 412 (2007), 444–447 | MR
[14] Galaktionov V. A., “Nelineinye uravneniya dispersii: gladkie deformatsii, kompaktony i obobscheniya na sluchai vysokogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1859 | MR | Zbl
[15] Galaktionov V. A., Svirshchevskii S. R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Chapman Hall/CRC, Boca Raton, Florida, 2007 | MR | Zbl
[16] Galaktionov V. A., Vazquez J. L., A stability technique for evolution partial differential equations. A dynamical systems approach, Birkhäuser, Boston, Berlin, 2004 | MR | Zbl
[17] Gelfand I. M., “Nekotorye problemy teorii kvazilineinykh uravnenii”, Uspekhi matem. nauk, 14 (1959), 87–158
[18] Hyman J. M., Rosenau P., “Pulsating multiplet solutions of quintic wave equations”, Phys. D, 123 (1998), 502–512 | DOI | MR | Zbl
[19] Inc M., “New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein–Gordon equations”, Chaos, Solitons and Fractals, 33 (2007), 1275–1284 | DOI | MR | Zbl
[20] Kawamoto S., “An exact transformation from the Harry Dym equation to the modified KdV equation”, J. Phys. Soc. Japan, 54 (1985), 2055–2056 | DOI | MR
[21] Kruzhkov C. H., “Kvazilineinye uravneniya pervogo poryadka s neskolkimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | Zbl
[22] Lions J. L., Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Gauthier-Villars, Paris, 1969 | MR | Zbl
[23] Lunardi A., Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser, Basel, Berlin, 1995 | MR | Zbl
[24] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, Uspekhi matem. nauk, 12 (1957), 3–73 | MR
[25] Oleinik O. A., “Edinstvennost i ustoichivost obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, Uspekhi matem. nauk, 14 (1959), 165–170 | MR
[26] Porubov A. V., Velarde M. G., “Strain kinks in an elastic rod embedded in a viscoelastic medium”, Wave Motion, 35 (2002), 189–204 | DOI | MR | Zbl
[27] Rosenau P., “Nonlinear dispersion and compact structures”, Phys. Rev. Letts, 73 (1994), 1737–1741 | DOI | MR | Zbl
[28] Rosenau P., “On solitons, compactons, and Lagrange maps”, Phys. Letts. A, 211 (1996), 265–275 | DOI | MR | Zbl
[29] Rosenau P., “On a class of nonlinear dispersive-dissipative interactions”, Phys. D, 123 (1998), 525–546 | DOI | MR | Zbl
[30] Rosenau P., “Compact and noncompact dispersive patterns”, Phys. Letts. A, 275 (2000), 193–203 | DOI | MR | Zbl
[31] Rosenau P., Hyman J. M., “Compactons: solitons with finite wavelength”, Phys. Rev. Letts, 70 (1993), 564–567 | DOI | Zbl
[32] Rosenau P., Kamin S., “Thermal waves in an absorbing and convecting medium”, Phys. D, 8 (1983), 273–283 | DOI | MR | Zbl
[33] Rosenau P., Levy D., “Compactons in a class of nonlinearly quintic equations”, Phys. Letts. A, 252 (1999), 297–306 | DOI | MR | Zbl
[34] Shen J.,Xu W., Li W., “Bifurcation of travelling wave solutions in a new integrable equation with peakon and compactons”, Chaos, Solitons and Fractals, 27 (2006), 413–425 | DOI | MR | Zbl
[35] Smoller J., Shock waves and reaction-diffusion equations, Springer, New York, 1983 | MR | Zbl
[36] Takuwa H., “Microlocal analytic smoothing effects for operators of real principal type”, Osaka J. Math., 43 (2006), 13–62 | MR | Zbl
[37] Yan Z., “Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation. II. Solitary pattern solutions”, Chaos, Solitons and Fractals, 18 (2003), 869–880 | DOI | MR | Zbl
[38] Yao R.-X.,Li Z.-B., “Conservation laws and new exact solutions for the generalized seventh order KdV equation”, Chaos, Solitons and Fractals, 20 (2004), 259–266 | DOI | MR | Zbl