Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1819-1846

Voir la notice de l'article provenant de la source Math-Net.Ru

Shock waves and blowup arising in third-order nonlinear dispersive equations are studied. The underlying model is the equation in \begin{equation} u_t=(uu_x)_{xx}\quad\text{in}\quad\mathbb R\times\mathbb R_+. \label{1} \end{equation} It is shown that two basic Riemann problems for Eq. (1) with the initial data $$ S_{\pm}(x)=\mp\operatorname{sign}{x} $$ exhibit a shock wave ($u(x,t)\equiv S_{-}(x)$) and a smooth rarefaction wave (for $S_{+}$), respectively. Various blowing-up and global similarity solutions to Eq. (0.1) are constructed that demonstrate the fine structure of shock and rarefaction waves. A technique based on eigenfunctions and the nonlinear capacity is developed to prove the blowup of solutions. The analysis of Eq. (1) resembles the entropy theory of scalar conservation laws of the form $u_t+uu_x=0$, which was developed by O. A. Oleinik and S. N. Kruzhkov (for equations in $x\in\mathbb R^N$ ) in the 1950s–1960s.
@article{ZVMMF_2008_48_10_a5,
     author = {V. A. Galaktionov and S. I. Pokhozhaev},
     title = {Third-order nonlinear dispersive equations: {Shocks,} rarefaction, and blowup waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1819--1846},
     publisher = {mathdoc},
     volume = {48},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/}
}
TY  - JOUR
AU  - V. A. Galaktionov
AU  - S. I. Pokhozhaev
TI  - Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1819
EP  - 1846
VL  - 48
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/
LA  - ru
ID  - ZVMMF_2008_48_10_a5
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%A S. I. Pokhozhaev
%T Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1819-1846
%V 48
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/
%G ru
%F ZVMMF_2008_48_10_a5
V. A. Galaktionov; S. I. Pokhozhaev. Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1819-1846. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a5/