Two methods for minimizing convex functions in a class of nonconvex sets
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1802-1811 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conditional gradient method and the steepest descent method, which are conventionally used for solving convex programming problems, are extended to the case where the feasible set is the set-theoretic difference between a convex set and the union of several convex sets. Iterative algorithms are proposed, and their convergence is examined.
@article{ZVMMF_2008_48_10_a3,
     author = {Yu. A. Chernyaev},
     title = {Two methods for minimizing convex functions in a~class of nonconvex sets},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1802--1811},
     year = {2008},
     volume = {48},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a3/}
}
TY  - JOUR
AU  - Yu. A. Chernyaev
TI  - Two methods for minimizing convex functions in a class of nonconvex sets
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1802
EP  - 1811
VL  - 48
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a3/
LA  - ru
ID  - ZVMMF_2008_48_10_a3
ER  - 
%0 Journal Article
%A Yu. A. Chernyaev
%T Two methods for minimizing convex functions in a class of nonconvex sets
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1802-1811
%V 48
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a3/
%G ru
%F ZVMMF_2008_48_10_a3
Yu. A. Chernyaev. Two methods for minimizing convex functions in a class of nonconvex sets. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1802-1811. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a3/

[1] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[2] Chernyaev Yu. A., “Obobschenie metoda uslovnogo gradienta na odin klass nevypuklykh ekstremalnykh zadach”, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 576–582 | MR | Zbl

[3] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[4] Loran P. Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975