A primal interior point method for the linear semidefinite programming problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1780-1801 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linear semidefinite programming problem is examined. A primal interior point method is proposed to solve this problem. It extends the barrier-projection method used for linear programs. The basic properties of the proposed method are discussed, and its local convergence is proved.
@article{ZVMMF_2008_48_10_a2,
     author = {M. S. Babynin and V. G. Zhadan},
     title = {A~primal interior point method for the linear semidefinite programming problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1780--1801},
     year = {2008},
     volume = {48},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a2/}
}
TY  - JOUR
AU  - M. S. Babynin
AU  - V. G. Zhadan
TI  - A primal interior point method for the linear semidefinite programming problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1780
EP  - 1801
VL  - 48
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a2/
LA  - ru
ID  - ZVMMF_2008_48_10_a2
ER  - 
%0 Journal Article
%A M. S. Babynin
%A V. G. Zhadan
%T A primal interior point method for the linear semidefinite programming problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1780-1801
%V 48
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a2/
%G ru
%F ZVMMF_2008_48_10_a2
M. S. Babynin; V. G. Zhadan. A primal interior point method for the linear semidefinite programming problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1780-1801. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a2/

[1] Vandenberghe L., Boyd S., “Semidefinite programming”, SIAM Rev., 38 (1996), 49–95 | DOI | MR | Zbl

[2] Todd M. J., “Semidefinite optimization”, Acta Numer., 10 (2001), 515–560 | DOI | MR | Zbl

[3] Laurent M., Renale F., Semidefinite programming and integer programming, Discrete Optimizat. Handbooks in Operat. Res. and Management Sci., Elsevier, Amsterdam, 2002

[4] De Klerk E., Aspects of semidefinite programming, interior point algorithms and selected applications, Kluwer Acad. Publs, Dordrecht etc., 2004 | MR

[5] H. Wolkowicz, R. Saigal, L. Vandenberghe (eds.), Handbook of semidefinite programming, Kluwer Acad. Publs, Dordrecht, 2000 | MR

[6] Alizadeh F., “Interior point methods in semidefinite programming with applications to combinatorial optimization”, SIAM J. Optimizat., 5 (1995), 13–51 | DOI | MR | Zbl

[7] Monteiro R. D. C., “Primal-dual path-following algorithms for semidefinite programming”, SIAM J. Optimizat., 7 (1997), 663–678 | DOI | MR | Zbl

[8] Monteiro R. D. C., “First- and second-order methods for semidefinite programming”, Math. Program. Ser. B, 97:1–2 (2003), 209–244 | MR | Zbl

[9] Evtushenko Yu., Zhadan V., “Stable barrier-projection and barrier-newton methods in linear programming”, Comput. Optimizat. and Appl., 3 (1994), 289–304 | DOI | MR

[10] Evtushenko Yu. G., Zhadan V. G., “Barerno-proektivnye metody resheniya zadach nelineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 34:5 (1994), 669–684 | MR | Zbl

[11] Babynin M. S., Zhadan V. G., Barerno-proektivnyi metod dlya poluopredelennogo programmirovaniya, Soobsch. po prikl. matem., VTs RAN, M., 2007 | MR

[12] Pataki G., “On the rank of extreme matrices in semidefinite programs and multiplicity of optimal eigenvalues”, Math. Operat. Res., 23:2 (1998), 339–358 | DOI | MR | Zbl

[13] Pataki G., “The geometry of semidefinite programming”, Handbook Semidefinite Programming, Kluwer Acad. Publs, Dordrecht etc., 2002, 29–66 | MR

[14] Arnold V. I., “O matritsakh, zavisyaschikh ot parametrov”, Uspekhi matem. nauk, 26:2(158) (1971), 101–114 | MR

[15] Alizadeh F., Haeberly J.-P. F., Overton M. L., “Complementarity and nondeceneracy in semidefinite programming”, Math. Program., Ser. B, 7:2 (1997), 129–162 | MR

[16] Magnus Ya. P., Neidekker Ch., Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, Fizmatlit, M., 2002

[17] Magnus J. R., Neudecker H., “The elimination matrix: some lemmas and applications”, SIAM J. Algorithm Disc. Meth., 1:4 (1980), 422–449 | DOI | MR | Zbl

[18] Markus M., Mink Ch., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[19] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya sistem nelineinykh uravnenii so mnogimi neizvestnymi, Mir, M., 1975