@article{ZVMMF_2008_48_10_a2,
author = {M. S. Babynin and V. G. Zhadan},
title = {A~primal interior point method for the linear semidefinite programming problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1780--1801},
year = {2008},
volume = {48},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a2/}
}
TY - JOUR AU - M. S. Babynin AU - V. G. Zhadan TI - A primal interior point method for the linear semidefinite programming problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1780 EP - 1801 VL - 48 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a2/ LA - ru ID - ZVMMF_2008_48_10_a2 ER -
%0 Journal Article %A M. S. Babynin %A V. G. Zhadan %T A primal interior point method for the linear semidefinite programming problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1780-1801 %V 48 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a2/ %G ru %F ZVMMF_2008_48_10_a2
M. S. Babynin; V. G. Zhadan. A primal interior point method for the linear semidefinite programming problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1780-1801. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a2/
[1] Vandenberghe L., Boyd S., “Semidefinite programming”, SIAM Rev., 38 (1996), 49–95 | DOI | MR | Zbl
[2] Todd M. J., “Semidefinite optimization”, Acta Numer., 10 (2001), 515–560 | DOI | MR | Zbl
[3] Laurent M., Renale F., Semidefinite programming and integer programming, Discrete Optimizat. Handbooks in Operat. Res. and Management Sci., Elsevier, Amsterdam, 2002
[4] De Klerk E., Aspects of semidefinite programming, interior point algorithms and selected applications, Kluwer Acad. Publs, Dordrecht etc., 2004 | MR
[5] H. Wolkowicz, R. Saigal, L. Vandenberghe (eds.), Handbook of semidefinite programming, Kluwer Acad. Publs, Dordrecht, 2000 | MR
[6] Alizadeh F., “Interior point methods in semidefinite programming with applications to combinatorial optimization”, SIAM J. Optimizat., 5 (1995), 13–51 | DOI | MR | Zbl
[7] Monteiro R. D. C., “Primal-dual path-following algorithms for semidefinite programming”, SIAM J. Optimizat., 7 (1997), 663–678 | DOI | MR | Zbl
[8] Monteiro R. D. C., “First- and second-order methods for semidefinite programming”, Math. Program. Ser. B, 97:1–2 (2003), 209–244 | MR | Zbl
[9] Evtushenko Yu., Zhadan V., “Stable barrier-projection and barrier-newton methods in linear programming”, Comput. Optimizat. and Appl., 3 (1994), 289–304 | DOI | MR
[10] Evtushenko Yu. G., Zhadan V. G., “Barerno-proektivnye metody resheniya zadach nelineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 34:5 (1994), 669–684 | MR | Zbl
[11] Babynin M. S., Zhadan V. G., Barerno-proektivnyi metod dlya poluopredelennogo programmirovaniya, Soobsch. po prikl. matem., VTs RAN, M., 2007 | MR
[12] Pataki G., “On the rank of extreme matrices in semidefinite programs and multiplicity of optimal eigenvalues”, Math. Operat. Res., 23:2 (1998), 339–358 | DOI | MR | Zbl
[13] Pataki G., “The geometry of semidefinite programming”, Handbook Semidefinite Programming, Kluwer Acad. Publs, Dordrecht etc., 2002, 29–66 | MR
[14] Arnold V. I., “O matritsakh, zavisyaschikh ot parametrov”, Uspekhi matem. nauk, 26:2(158) (1971), 101–114 | MR
[15] Alizadeh F., Haeberly J.-P. F., Overton M. L., “Complementarity and nondeceneracy in semidefinite programming”, Math. Program., Ser. B, 7:2 (1997), 129–162 | MR
[16] Magnus Ya. P., Neidekker Ch., Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, Fizmatlit, M., 2002
[17] Magnus J. R., Neudecker H., “The elimination matrix: some lemmas and applications”, SIAM J. Algorithm Disc. Meth., 1:4 (1980), 422–449 | DOI | MR | Zbl
[18] Markus M., Mink Ch., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR
[19] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya sistem nelineinykh uravnenii so mnogimi neizvestnymi, Mir, M., 1975