Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1731-1747 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Problems related to the temporal stability of laminar viscous incompressible flows in ducts with a constant cross section are formulated, justified, and numerically solved. For the systems of ordinary differential and algebraic equations obtained by a spatial approximation, a new dimension reduction technique is proposed and substantiated. The solutions to the reduced systems are decomposed over subspaces of modes, which considerably improves the computational stability of the method and reduces the computational costs as compared with the usual decompositions over individual modes. The optimal disturbance problem is considered as an example. Numerical results for Poiseuille flows in a square duct are presented and discussed.
@article{ZVMMF_2008_48_10_a0,
     author = {A. V. Boiko and Yu. M. Nechepurenko},
     title = {Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1731--1747},
     year = {2008},
     volume = {48},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a0/}
}
TY  - JOUR
AU  - A. V. Boiko
AU  - Yu. M. Nechepurenko
TI  - Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1731
EP  - 1747
VL  - 48
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a0/
LA  - ru
ID  - ZVMMF_2008_48_10_a0
ER  - 
%0 Journal Article
%A A. V. Boiko
%A Yu. M. Nechepurenko
%T Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1731-1747
%V 48
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a0/
%G ru
%F ZVMMF_2008_48_10_a0
A. V. Boiko; Yu. M. Nechepurenko. Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 10, pp. 1731-1747. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_10_a0/

[1] Theofilis V., Duck P. W., Owen J., “Viscous linear stability analysis of rectangular duct and cavity flow”, J. Fluid Mech., 505 (2004), 249–286 | DOI | MR | Zbl

[2] Gosset A., Tavoularis S., “Laminar flow instability in a rectangular channel with a cylindrical core”, Phys. Fluids, 18:4 (2006), 044108.1–044108.8 | DOI

[3] Parker S.J̇., Balachandar S., “Viscous and inviscid instabilities of flow along a stream wise corner”, Theor. Comput. Fluid dynamics, 13 (1999), 231–270 | DOI | Zbl

[4] Tatsumi T., Yoshimura T., “Stability of the laminar flow in a rectangular duct”, J. Fluid Mech., 212 (1990), 437–449 | DOI | Zbl

[5] Galletti B., Bottaro A., “Large-scale secondary structure in duct flow”, J. Fluid Mech., 512 (2004), 85–94 | DOI | MR | Zbl

[6] O'Sullivan P. L., Breuer K. S., “Transient growth in circular pipe flow. I. Linear disturbances”, Phys. Fluids, 6:11 (1994), 3643–3651 | DOI

[7] Schmid P. J., Henningson D. S., Stability and transition in shear flows, Springer, Berlin, 2000 | MR

[8] Temam P., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[9] Anderson E., Bai Z., Bischof C. et al., LAPACK users guide, SIAM, Philadelphia, 1992

[10] Golub G. H., Van Loan C. F., Martix computations, John Hopkins Univ. Press, London, 1991

[11] Stewart G., Sun J., Matrix perturbation theory, California Acad. Press, San Diego, 1990 | MR

[12] Godunov S. K., Modern aspects of linar algebra, Transl. Math. Monogr., 175, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[13] Nechepurenko Yu. M., “Spektralnye razlozheniya”, Tr. matem. tsentra im. N. I. Lobachevskogo, 26, Izd-vo kazanskogo matem. ob-va, Kazan, 2004, 18–70

[14] Hechme G., Nechepurenko Yu. M., “Computing reducing subspaces of a large linear matrix pencil”, Russ. J. Numer. Analys. Math. Modelling, 21:3 (2006), 185–198 | DOI | MR | Zbl

[15] Moler C., Van Loan C. F., “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later”, SIAM Rev., 45:1 (2003), 3–49 | DOI | MR | Zbl

[16] Weideman J. A. C., Reddy S. C., “A MATLAB Differentiation Matrix Suite”, ACM Trans. Math. Software, 26:4 (2000), 465–519 | DOI | MR

[17] Waldvogel J., “Fast construction of the Fejer and Clenshaw–Curtis quadrature rules”, BIT Numer. Math., 43:1 (2003), 1–18 | DOI | MR