Numerical estimates for stability domains of Lagrangian solutions to the restricted three-body problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1538-1549 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The geometric parameters of stability domains of Lagrangian solutions to the classical restricted three-body problem are quantitatively estimated. It is shown that these domains are ellipsoid-like plane figures stretched along the tangent to the circle that passes through the Lagrangian triangle solutions. A heuristic algorithm is proposed for determining the maximum size of these domains of attraction.
@article{ZVMMF_2007_47_9_a8,
     author = {E. A. Grebenikov and D. Kozak-Skovorodkina},
     title = {Numerical estimates for stability domains of {Lagrangian} solutions to the restricted three-body problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1538--1549},
     year = {2007},
     volume = {47},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a8/}
}
TY  - JOUR
AU  - E. A. Grebenikov
AU  - D. Kozak-Skovorodkina
TI  - Numerical estimates for stability domains of Lagrangian solutions to the restricted three-body problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1538
EP  - 1549
VL  - 47
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a8/
LA  - ru
ID  - ZVMMF_2007_47_9_a8
ER  - 
%0 Journal Article
%A E. A. Grebenikov
%A D. Kozak-Skovorodkina
%T Numerical estimates for stability domains of Lagrangian solutions to the restricted three-body problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1538-1549
%V 47
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a8/
%G ru
%F ZVMMF_2007_47_9_a8
E. A. Grebenikov; D. Kozak-Skovorodkina. Numerical estimates for stability domains of Lagrangian solutions to the restricted three-body problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1538-1549. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a8/

[1] Euler L., “De motu rectilineo trium corporum se mutuo attrahentium”, Nov. Communs Petrop., 11 (1765), 144 pp.

[2] Lagranzh Zh., Analiticheskaya mekhanika, v. 1, Nauka, M., 1952; т. 2, 1953

[3] Sebekhei V., Teoriya orbit, Ogranichennaya zadacha trekh tel, Nauka, M., 1982

[4] Abalakin V. K., Aksenov E. P., Grebenikov E. A. i dr., Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike, Nauka, M., 1976

[5] Grebennikov E, A., Tyulina H. A., Nikolai Dmitrievich Moiseev, Ser. NBL, Nauka, M., 2006

[6] Kolmogorov A. N., “On the conservation of quasi-periodic motions for a small change in the Hamiltonian function”, Dokl. Adad. Nauk USSR, 98:4 (1954), 527–530 | MR | Zbl

[7] Arnold V. I., “Ob ustoichivosti polozhenii ravnovesiya gamiltonovoi sistemy obyknovennykh differentsialnykh uravnenii v obschem ellipticheskom sluchae”, Dokl. AN SSSR, 137:2 (1961), 255–257 | MR

[8] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, M., 1973

[9] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[10] Samoilenko A. M., “K voprosu o strukture traektorii na tore”, Ukr. matem. zhurnal, 16:6 (1964) | MR

[11] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Sobr. soch., v. 1, Izd-vo AN SSSR, M., L., 1954

[12] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978

[13] Sokolskii A. G., “Ob ustoichivosti lagranzhevykh reshenii ogranichennoi zadachi trekh tel pri kriticheskom otnoshenii mass”, Prikl. matem. i mekhan., 39:2 (1975), 366–369

[14] Wolfram S., The Mathematica-Book, Univ. Press, Cambridge, 1996 | MR

[15] Gascheau G., “Examen d'une classe d'equations differentielles et applications a un cas particulier du probleme des trios corps”, Compt. Rend., 16 (1843)

[16] Routh E. I., Proc. London Mathematical Sociely, 6 (1875)

[17] Lyapunov A. M., Ob ustoichivosti dvizheniya v odnom chastnom sluchae zadachi o trekh telakh, v. 2, Soobsch. matem. ob-va, Kharkov, 1889

[18] Birkgof Dzh. D., Dinamicheskie sistemy, Izdat. Dom “Udmurtskii universitet”, Izhevsk, 1999 | Zbl

[19] Deprit A., “Limiting orbits around the equilateral centers of libration”, Astron. J., 71:2 (1966), 77–87 | DOI

[20] Leontovich An. M., “Ob ustoichivosti lagranzhevykh periodicheskikh reshenii ogranichennoi zadachi trekh tel”, Dokl. AN SSSR, 143:3 (1962), 525–528 | Zbl