@article{ZVMMF_2007_47_9_a7,
author = {M. A. Posypkin and I. Kh. Sigal},
title = {Application of parallel heuristic algorithms for speeding up parallel implementations of the branch-and-bound method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1524--1537},
year = {2007},
volume = {47},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a7/}
}
TY - JOUR AU - M. A. Posypkin AU - I. Kh. Sigal TI - Application of parallel heuristic algorithms for speeding up parallel implementations of the branch-and-bound method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1524 EP - 1537 VL - 47 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a7/ LA - ru ID - ZVMMF_2007_47_9_a7 ER -
%0 Journal Article %A M. A. Posypkin %A I. Kh. Sigal %T Application of parallel heuristic algorithms for speeding up parallel implementations of the branch-and-bound method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2007 %P 1524-1537 %V 47 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a7/ %G ru %F ZVMMF_2007_47_9_a7
M. A. Posypkin; I. Kh. Sigal. Application of parallel heuristic algorithms for speeding up parallel implementations of the branch-and-bound method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1524-1537. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a7/
[1] Voevodin V. V., Voevodin Vl. V., Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002
[2] Barskii A. B., Parallelnye informatsionnye tekhnologii, INTUIT, M., 2007
[3] Emelyanov C. B., Afanasev A. P., “Problemy vychislenii v raspredelennoi srede: organizatsiya vychislenii v globalnykh setyakh”, Tr. In-ta sistemnogo analiza RAN, ROKhOS, M., 2004
[4] Posypkin M. A., Sigal I. Kh., “Issledovanie algoritmov parallelnykh vychislenii v zadachakh diskretnoi optimizatsii rantsevogo tipa”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1801–1809 | MR
[5] Posypkin M. A., Sigal I. Kh., Galimyanova H. H., Parallelnye algoritmy v zadachakh diskretnoi optimizatsii: vychislitelnye modeli, biblioteka, rezultaty eksperimentov, Soobsch. po prikl. matem., VTs RAN, M., 2006
[6] Ananth G. Y., Kumar V., Pardalos P., “Parallel processing of discrete optimization problems”, Encyclopedia of Microcomputers, 13 (1993), 129–147
[7] Trienekens H., Bruin A., Towards a taxonomy of parallel branch and bound algorithms, Report EUR-CS-92-01, Erasmus Univ., Rotterdam, 1992
[8] Gendron B., Grainic T. G., “Parallel branch-and-bound survey and synthesis”, Operat. Res., 42:6 (1994), 1042–1066 | DOI | MR | Zbl
[9] Sigal I. Kh., Ivanova A. P., Vvedenie v prikladnoe diskretnoe programmirovanie, Fizmatlit, M., 2002
[10] Kochetov Yu., Mladenovich N., Khansen P., “Lokalnyi poisk s chereduyuschimisya okrestnostyami”, Diskretnyi analiz i issl. operatsii. Seriya 2, 10:1 (2003), 11–43 | MR | Zbl
[11] Martello S., Toth P., Knapsack problems: Algorithms and computer implementations, John Wiley Sons, 1990 | MR | Zbl
[12] Posypkin M. A., “Arkhitektura i programmnaya organizatsiya biblioteki dlya resheniya zadach optimizatsii metodom vetvei i granits na mnogoprotsessornykh vychislitelnykh kompleksakh”, Probl. vychisl. v raspredelennoi srede: raspredelennye prilozheniya, kommunikatsionnye sistemy, matem. modeli i optimizatsiya, Tr. ISA RAN, KomKniga, M., 2006, 18–25
[13] Sigal I. Kh., Babinskaya Ya. L., Posypkin M. A., “Parallelnaya realizatsiya metoda vetvei i granits v zadache kommivoyazhera na baze biblioteki BNB-Solver”, Probl. vychislenii v raspredelennoi srede: raspredelennye prilozheniya, kommunikatsionnye sistemy, matem. modeli i optimizatsiya, Tr. ISA RAN, KomKniga, M., 2006, 26–36
[14] Mezhvedomstvennyi superkompyuternyi tsentr RAN http://www.jscc.ru
[15] Kellerer H., Pferschy U., Pisinger D., Knapsack problems, Springer, Berlin, 2004 | MR
[16] Iskhodnye dannye dlya zadachi o rantse http://dcs.isa.ru/posypkin/knapdata/index.html
[17] Finkelshtein Yu. Yu., Priblizhennye metody i prikladnye zadachi diskretnogo programmirovaniya, Nauka, M., 1976
[18] Crainic T., Toulouse M., Parallel-strategies for metaheuristics. State-of-the-Art Handbook in Metaheuristics, Kluwer Acad. Pubs., 2002 | Zbl
[19] Hoff A., Løkketangen A., Mittet I., Genetic Algorithms for 0/1 multidimensional knapsack problems, Norsk Informatikkonferanse, 1996, 291–302 pp.
[20] Glover F., Kochenberger G., “Critical event tabu search for multidimensional knapsack problems”, Meta-Heuristics: Theory Applic., 1996, 407–427 | Zbl
[21] Matsumura T., Nakamura M., Okech J., Onaga K., “A paralel and distributed genetic algorithm on loosely-coupled multiprocessor systems”, IEICE Trans. Fundam. Electron. Communs Comput. Sci. (Japan), E81-A:4 (1998), 540–546
[22] Niar S., Freville A., “A parallel tabu search algorithm for the 0-1 multidimensional khapsack problem”, 11th Internat. Parallel Processing Symposium (IPPS'97), 1997, 512–516
[23] Denzinger J., Offermann T., “On cooperation between evolutionary algorithims and other search paradigms”, Proc. CEC-99, IEEE Press, Washington, 1999, 2317–2324