The Lagrange principle in the problem of optimal inversion of linear operators in finite-dimensional spaces with a priori information about its solution
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1512-1523 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of solving a system of linear algebraic equations is examined. An application of the Lagrange principle to the optimal recovery in this problem is described. New optimal methods that use available information about the errors in the data and a priori information about the solution are proposed for solving such systems.
@article{ZVMMF_2007_47_9_a6,
     author = {A. V. Bayev},
     title = {The {Lagrange} principle in the problem of optimal inversion of linear operators in finite-dimensional spaces with a~priori information about its solution},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1512--1523},
     year = {2007},
     volume = {47},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a6/}
}
TY  - JOUR
AU  - A. V. Bayev
TI  - The Lagrange principle in the problem of optimal inversion of linear operators in finite-dimensional spaces with a priori information about its solution
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1512
EP  - 1523
VL  - 47
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a6/
LA  - ru
ID  - ZVMMF_2007_47_9_a6
ER  - 
%0 Journal Article
%A A. V. Bayev
%T The Lagrange principle in the problem of optimal inversion of linear operators in finite-dimensional spaces with a priori information about its solution
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1512-1523
%V 47
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a6/
%G ru
%F ZVMMF_2007_47_9_a6
A. V. Bayev. The Lagrange principle in the problem of optimal inversion of linear operators in finite-dimensional spaces with a priori information about its solution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1512-1523. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a6/

[1] Baev A. B., “Printsip Lagranzha i konechnomernaya approksimatsiya v zadache optimalnogo obrascheniya lineinykh operatorov”, Vychisl. metody i programmirovanie, 7:2 (2006), 323–336 | MR

[2] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[3] Magaril-iryaev G. G., Osipenko K. Yu., Tikhomirov V. M., “Optimal recovery and extremum theory”, Comput. Meth. and Funct. Theory, 2:1 (2002), 87–112 | MR

[4] Arestov B. B., “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Tr. MIAN SSSR, 189, M., 1989, 3–20 | MR

[5] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Matem. zametki, 50:6 (1991), 85–93 | MR

[6] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[7] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973