Defining systems and Newton-like methods for finding singular solutions to nonlinear boundary value problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1467-1485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A technique proposed earlier for constructing defining systems, which are a means for finding singular solutions to nonlinear equations, and the Newton-like methods based on this technique are now analyzed from the point of view of their stability with respect to perturbations in the operator of the equation. The results obtained make it possible to extend this approach to nonlinear boundary value problems for ordinary differential equations.
@article{ZVMMF_2007_47_9_a2,
     author = {M. Yu. Erina and A. F. Izmailov},
     title = {Defining systems and {Newton-like} methods for finding singular solutions to nonlinear boundary value problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1467--1485},
     year = {2007},
     volume = {47},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a2/}
}
TY  - JOUR
AU  - M. Yu. Erina
AU  - A. F. Izmailov
TI  - Defining systems and Newton-like methods for finding singular solutions to nonlinear boundary value problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1467
EP  - 1485
VL  - 47
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a2/
LA  - ru
ID  - ZVMMF_2007_47_9_a2
ER  - 
%0 Journal Article
%A M. Yu. Erina
%A A. F. Izmailov
%T Defining systems and Newton-like methods for finding singular solutions to nonlinear boundary value problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1467-1485
%V 47
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a2/
%G ru
%F ZVMMF_2007_47_9_a2
M. Yu. Erina; A. F. Izmailov. Defining systems and Newton-like methods for finding singular solutions to nonlinear boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1467-1485. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a2/

[1] Izmailov L. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR

[2] Brezhneva O. A., Izmailov A. F., “O postroenii opredelyayuschikh sistem dlya otyskaniya osobykh reshenii nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 10–22 | MR | Zbl

[3] Erina M. Yu., Izmailov A. F., “Metod Gaussa–Nyutona dlya otyskaniya osobykh reshenii sistem nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 784–795 | MR

[4] Bellman R., Kalaba R., Kvazilinearizatsiya i nelineinye kraevye zadachi, Mir, M., 1968 | Zbl

[5] Keller H. B., Numerical methods for two-point boundary value problems, Blaisdell, Waltham, 1968 | MR | Zbl

[6] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[7] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[8] Alekseev V. M., Tikhomirov V. M., Fomin C. B., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[9] Izmailov A. F., Solodov M. V., Chislennye metody optimizatsii, Fizmatlit, M., 2003 | MR

[10] Trenogin B. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl