Maximum predicate descriptions of sets of mappings
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1636-1648 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is carried out in the framework of the algebraic approach and is devoted to the problem of describing sets of mappings by pairs of m-place predicates. Maximum descriptions are distinguished in the set of all predicate descriptions, and necessary and sufficient maximality conditions are obtained. Using a partial order and betweenness relations as examples, it is shown that, for a given predicate on the set of values, the necessary maximality conditions imply some properties of this predicate on its domain. Taking this fact into account, a set of axioms for the betweenness relation is proposed, and examples of such relations are considered.
@article{ZVMMF_2007_47_9_a16,
     author = {R. S. Takhanov},
     title = {Maximum predicate descriptions of sets of mappings},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1636--1648},
     year = {2007},
     volume = {47},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a16/}
}
TY  - JOUR
AU  - R. S. Takhanov
TI  - Maximum predicate descriptions of sets of mappings
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1636
EP  - 1648
VL  - 47
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a16/
LA  - ru
ID  - ZVMMF_2007_47_9_a16
ER  - 
%0 Journal Article
%A R. S. Takhanov
%T Maximum predicate descriptions of sets of mappings
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1636-1648
%V 47
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a16/
%G ru
%F ZVMMF_2007_47_9_a16
R. S. Takhanov. Maximum predicate descriptions of sets of mappings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1636-1648. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a16/

[1] Marnenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2004

[2] Rosenberg I. G., “Uber die funktionale Vollstandigkeit in den mehrwertigen ogiken”, Rozpravy Ceskoslovenske Akad. Ved. Rada Math. Prir. Ved. Praha, 80 (1970), 3–93 | MR

[3] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33 (1979), 5–68

[4] Rudakov K. V., “O simmetricheskikh i funktsionalnykh ogranicheniyakh dlya algoritmov klassifikatsii”, Dokl. AN SSSR, 297:1 (1987), 43–46 | MR

[5] Rudakov K. V., “Ob algebraicheskoi teorii universalnykh i lokalnykh ogranichenii dlya zadach klassifikatsii”, Raspoznavanie, klassifikatsiya, prognoz, v. 1, Nauka, M., 1989

[6] Takhanov P. C., “Predikatnoe zadanie universalnykh ogranichenii v algebraicheskom podkhode k zadacham raspoznavaniya”, Zh. vychisl. matem. i matem. fiz., 47:3 (2007), 547–552 | MR | Zbl

[7] Rudakov K. V., Chekhovich Yu. V., “Kriterii polnoty modelei algoritmov i semeistv reshayuschikh pravil dlya zadach klassifikatsii s teoretiko-mnozhestvennymi ogranicheniyami”, Dokl. RAN, 395:6 (2004), 749–750 | MR

[8] Sudan M., A geometric approach to betweennes, Proc. 3rd European Symposium on Algorithms, 1995