Physical pattern of wave emission in a wedge-shaped region: Generalization of the transverse diffusion method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1576-1590 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analysis of the rigorous solution to the problem of waves emitted by sources arbitrarily distributed along a wedge face is used to propose a generalization of the Malyuzhinets heuristic transverse diffusion method. Mathematically, the problem is reduced to the numerical solution of a parabolic equation in ray coordinates with prescribed discontinuities on the boundaries of the shadow zone of partial plane waves or with a distributed right-hand side. The physical concept of the phase synchronism of emitted and diffracted waves is stated.
@article{ZVMMF_2007_47_9_a11,
     author = {S. A. Zapunidi and A. V. Popov},
     title = {Physical pattern of wave emission in a~wedge-shaped region: {Generalization} of the transverse diffusion method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1576--1590},
     year = {2007},
     volume = {47},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a11/}
}
TY  - JOUR
AU  - S. A. Zapunidi
AU  - A. V. Popov
TI  - Physical pattern of wave emission in a wedge-shaped region: Generalization of the transverse diffusion method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1576
EP  - 1590
VL  - 47
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a11/
LA  - ru
ID  - ZVMMF_2007_47_9_a11
ER  - 
%0 Journal Article
%A S. A. Zapunidi
%A A. V. Popov
%T Physical pattern of wave emission in a wedge-shaped region: Generalization of the transverse diffusion method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1576-1590
%V 47
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a11/
%G ru
%F ZVMMF_2007_47_9_a11
S. A. Zapunidi; A. V. Popov. Physical pattern of wave emission in a wedge-shaped region: Generalization of the transverse diffusion method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1576-1590. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a11/

[1] Malyuzhinets G. D., “Razvitie predstavlenii o yavleniyakh difraktsii”, Uspekhi fiz. nauk, 69:2 (1959), 321–334

[2] Popov A. B., “Reshenie parabolicheskogo uravneniya teorii difraktsii metodom konechnykh raznostei”, Zh. vychisl. matem. i matem. fiz., 8:5 (1968), 1140–1144 | Zbl

[3] Malyuzhinets G. D., Vainshtein L. A., “Poperechnaya diffuziya pri difraktsii na impedansnom tsilindre bolshogo radiusa. Ch. 1. Parabolicheskoe uravnenie v luchevykh koordinatakh”, Radiotekhn. i elektronika, 6:8 (1961), 142–153

[4] Malyuzhinets G. D., “Formula obrascheniya dlya integrala Zommerfelda”, Dokl. AN SSSR, 118:6 (1958), 1099–1102 | MR | Zbl

[5] Babich V. M., Lyalinov M. A., Grikurov V. E., Metod Zommerfelda–Malyuzhintsa v zadachakh difraktsii, VVM, SPb., 2004

[6] Malyuzhinets G. D., “Izluchenie zvuka koleblyuschimisya granyami proizvolnogo klina. Chast 1”, Akustich. zhurnal, 1:2 (1955), 144–164

[7] Agrest M. M., Maksimovich M. Z., Teoriya nepolnykh tsilindricheskikh funktsii i ikh prilozheniya, Atomizdat, M., 1965 | Zbl