On special solutions to the matrix equations $X\bar X=I$ и $X\bar X=-I$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1460-1466
Cet article a éte moissonné depuis la source Math-Net.Ru
The matrix equations $X\bar X=I$ and $X\bar X=-I$ are important in the theory of consimilarity. For the first equation, a characterization of solutions was given in Section 4.6 of Matrix Analysis by Horn and Johnson. Since this characterization is not constructive, a complete and constructive description of solutions to these equations is derived under one of the following assumptions: (a) $X$ is a normal matrix, or (b) $X$ is a conjugate-normal matrix.
@article{ZVMMF_2007_47_9_a1,
author = {Kh. D. Ikramov},
title = {On special solutions to the matrix equations $X\bar X=I$ {\cyri} $X\bar X=-I$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1460--1466},
year = {2007},
volume = {47},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a1/}
}
TY - JOUR AU - Kh. D. Ikramov TI - On special solutions to the matrix equations $X\bar X=I$ и $X\bar X=-I$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1460 EP - 1466 VL - 47 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a1/ LA - ru ID - ZVMMF_2007_47_9_a1 ER -
Kh. D. Ikramov. On special solutions to the matrix equations $X\bar X=I$ и $X\bar X=-I$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 9, pp. 1460-1466. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_9_a1/
[1] Khori R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR
[2] Ikramov Kh. D., “Ob ispolzovanii blochnykh simmetrii pri reshenii algebraicheskikh zadach na sobstvennye znacheniya”, Zh. vychisl. matem. i matem. fiz., 30:11 (1990), 1614–1624 | MR
[3] George A., Ikramov Kh. D., Matushkina E. V., Tang W.-P., “On a QR-like algorithm for some structured eigenvalue problems”, SIAM J. Matrix Analys. and Appl., 16 (1995), 1107–1126 | DOI | MR | Zbl
[4] Ikramov Kh. D., “O psevdosobstvennykh znacheniyakh i singulyarnykh chislakh kompleksnoi kvadratnoi matritsy”, Zap. nauchn. seminarov POMI RAN, 334, 2006, 111–120 | MR | Zbl