On the convergence of numerical methods for solving a Volterra bilinear equations of the first kind
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1378-1386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A justification is given for the convergence of quadratures (namely, the right rectangle and midpoint rules) for the numerical solution of a Volterra bilinear equation of the first kind. Numerical results for some benchmark problems are presented.
@article{ZVMMF_2007_47_8_a9,
     author = {A. S. Apartsyn},
     title = {On the convergence of numerical methods for solving {a~Volterra} bilinear equations of the first kind},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1378--1386},
     year = {2007},
     volume = {47},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a9/}
}
TY  - JOUR
AU  - A. S. Apartsyn
TI  - On the convergence of numerical methods for solving a Volterra bilinear equations of the first kind
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1378
EP  - 1386
VL  - 47
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a9/
LA  - ru
ID  - ZVMMF_2007_47_8_a9
ER  - 
%0 Journal Article
%A A. S. Apartsyn
%T On the convergence of numerical methods for solving a Volterra bilinear equations of the first kind
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1378-1386
%V 47
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a9/
%G ru
%F ZVMMF_2007_47_8_a9
A. S. Apartsyn. On the convergence of numerical methods for solving a Volterra bilinear equations of the first kind. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1378-1386. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a9/

[1] Apartsin A. C., Markova E. V., “O chislennom reshenii bilineinogo uravneniya Volterra I roda”, Tr. XII Baikalskoi mezhdunar. konf., v. 4, Irkutsk, 2001, 20–24

[2] Apartsyn A. S., Markova E. V., “On numerical solution of the multylinear Volterra equations of the first kind”, Proc. Internat. Conf. Comput. Math. Part 2, Novosibirsk, 2001, 322–326 | MR

[3] Apartsin A. C., “O novykh klassakh lineinykh mnogomernykh uravnenii I roda tipa Volterra”, Izv. vuzov. Matematika, 1995, no. 11, 28–41 | MR | Zbl

[4] Apartsin A. C., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999

[5] Apartsin A. C., “O bilineinykh uravneniyakh Volterra I roda”, Optimizatsiya, upravlenie, intellekt, 2:8 (2004), 20–28

[6] Apartsin A. C., “O polilineinykh uravneniyakh Volterra I roda”, Avtomatika i telemekhan., 2004, no. 2, 118–125 | MR

[7] Apartsin A. C., “K teorii polilineinykh uravnenii Volterra I roda”, Optimizatsiya, upravlenie, intellekt, 1:9 (2005), 5–27

[8] Corless R. M., Gonnet G. H., Hare D. E. G., Jeffrey D. J., “Lambert's $W$ function in maple”, Maple Techn. Newsletter, 9 (1993) | Zbl

[9] Corless R. M., Gonnet G. H., Hare D. E. et al., “On the Lambert $W$ function”, Advanc. Comput. Maths., 5 (1996) | MR | Zbl

[10] Linz P., “Product integration method for Volterra integral equations of the first kind”, BIT, 11 (1971), 413–421 \ | DOI | MR | Zbl

[11] Apartsin A. C., Scherbinin M. C., “Modelirovanie dinamiki chislennosti populyatsii na baze uravnenii mazhoriruyuschikh bilineinye uravneniya Volterra I roda”, Optimizatsiya, upravlenie, intellekt, 2:10 (2005), 37–44