Source and coefficient inverse problems for an elliptic equation in a rectangle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1365-1377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problems of determining the source and coefficient of an elliptic equation in a rectangle are studied. Additional information on the solution to the direct problem (overdetermination) is the trace of its solution on an interval inside the rectangle. Sufficient existence and uniqueness conditions (global) are derived for the inverse problems. The study is performed in the class of continuously differentiable functions whose derivatives satisfy a Hölder condition.
@article{ZVMMF_2007_47_8_a8,
     author = {V. V. Solov'\"ev},
     title = {Source and coefficient inverse problems for an elliptic equation in a~rectangle},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1365--1377},
     year = {2007},
     volume = {47},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a8/}
}
TY  - JOUR
AU  - V. V. Solov'ëv
TI  - Source and coefficient inverse problems for an elliptic equation in a rectangle
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1365
EP  - 1377
VL  - 47
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a8/
LA  - ru
ID  - ZVMMF_2007_47_8_a8
ER  - 
%0 Journal Article
%A V. V. Solov'ëv
%T Source and coefficient inverse problems for an elliptic equation in a rectangle
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1365-1377
%V 47
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a8/
%G ru
%F ZVMMF_2007_47_8_a8
V. V. Solov'ëv. Source and coefficient inverse problems for an elliptic equation in a rectangle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1365-1377. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a8/

[1] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[2] Ladyzhenskaya O. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[3] Alifanov O. M., Identifikatsiya protsessov teploobmena letatelnykh apparatov (vvedenie v teoriyu obratnykh zadach), Nauka, M., 1979 | Zbl

[4] Anikanov Yu. E., Nekotorye metody issledovaniya mnogomernykh obratnykh zadach, Nauka, Novosibirsk, 1978

[5] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Nauka, M., 1994 | Zbl

[6] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[7] Tikhonov A. N., Leonov A. C., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR

[8] Belov Yu. Ya., Inverse problems for partial differential equations, VSP, Utrecht etc., 2002 | MR | Zbl

[9] Isakov V., Inverse problems for partial differential equations, Springer, New York etc., 1998 | MR | Zbl

[10] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker Inc, New York, Basel, 2000 | MR | Zbl

[11] Solovev B. B., “Obratnye zadachi opredeleniya istochnika dlya uravneniya Puassona na ploskosti”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 862–871 | MR

[12] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Izd-vo inostr. lit., M., 1957

[13] Khatson V., Pim Dzh., Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M., 1983 | MR

[14] Koldington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958

[15] Bitsadze A. B., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[16] Solovev V. V., “Obratnye zadachi dlya ellipticheskikh uravnenii na ploskosti. I”, Differents. ur-niya, 42:8 (2006), 1106–1114 | MR