On the formation of sharp transition layers in two-dimensional reaction-diffusion models
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1356-1364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a singularly perturbed parabolic equation in two dimensions, the formation of a solution with a sharp transition layer from a sufficiently general initial function is considered. An asymptotic analysis is used to estimate the time required for the formation of a contrast structure. Numerical results are presented.
@article{ZVMMF_2007_47_8_a7,
     author = {V. T. Volkov and N. E. Grach\"ev and N. N. Nefedov and A. N. Nikolaev},
     title = {On the formation of sharp transition layers in two-dimensional reaction-diffusion models},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1356--1364},
     year = {2007},
     volume = {47},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a7/}
}
TY  - JOUR
AU  - V. T. Volkov
AU  - N. E. Grachëv
AU  - N. N. Nefedov
AU  - A. N. Nikolaev
TI  - On the formation of sharp transition layers in two-dimensional reaction-diffusion models
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1356
EP  - 1364
VL  - 47
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a7/
LA  - ru
ID  - ZVMMF_2007_47_8_a7
ER  - 
%0 Journal Article
%A V. T. Volkov
%A N. E. Grachëv
%A N. N. Nefedov
%A A. N. Nikolaev
%T On the formation of sharp transition layers in two-dimensional reaction-diffusion models
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1356-1364
%V 47
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a7/
%G ru
%F ZVMMF_2007_47_8_a7
V. T. Volkov; N. E. Grachëv; N. N. Nefedov; A. N. Nikolaev. On the formation of sharp transition layers in two-dimensional reaction-diffusion models. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1356-1364. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a7/

[1] Vasileva A. B., Butuzov V. F., Nefedov H. H., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundamentalnaya i prikl. matem., 4:3 (1998), 799–851 | MR

[2] Nefedov H. H., “Asimptoticheskii metod differentsialnykh neravenstv v issledovanii periodicheskikh kontrastnykh struktur: suschestvovanie, asimptotika, ustoichivost”, Differents. ur-niya, 36:2 (2000), 262–269 | MR | Zbl

[3] Nefedov N. N., Radzinus M., Schneider K. R., Vaseil'eva A. B., “Change of the type of contrast structures in parabolic Neumann Problems”, Zh. vychisl. matem. i matem. fiz., 45:1 (2005), 41–55 | MR | Zbl

[4] Butuzov V. F., Nedelko I. V., “O globalnoi oblasti vliyaniya ustoichivykh reshenii s vnutrennimi sloyami”, Matem. sb., 192:5 (2001), 13–52 | MR

[5] Butuzov V. F., Nefedov H. H., Shnaider K. P., “O formirovanii i rasprostranenii rezkikh perekhodnykh sloev v parabolicheskikh zadachakh”, Vestn. MGU. Ser. 3. Fiz. Astron., 2005, no. 1, 9–13 | MR | Zbl

[6] Allen S. M., Cohn J. W., “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta Metal., 27 (1979), 1085–1095 | DOI