The second Hamiltonian structure for a special case of the Lotka–Volterra equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1340-1349

Voir la notice de l'article provenant de la source Math-Net.Ru

A special case of the Lotka–Volterra equations is considered for which it is possible to find the second Hamiltonian structure that is complementary to the known one. The form of the new Hamiltonian makes it possible to solve the equations by quadratures, which is the main feature of the case under examination. As a consequence, the period can also be represented by quadratures. In terms of the new variables, the equations of motion admit a mechanical analogy with the oscillations of a mass on a nonlinear spring.
@article{ZVMMF_2007_47_8_a5,
     author = {Yu. V. Bibik},
     title = {The second {Hamiltonian} structure for a~special case of the {Lotka{\textendash}Volterra} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1340--1349},
     publisher = {mathdoc},
     volume = {47},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a5/}
}
TY  - JOUR
AU  - Yu. V. Bibik
TI  - The second Hamiltonian structure for a special case of the Lotka–Volterra equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1340
EP  - 1349
VL  - 47
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a5/
LA  - ru
ID  - ZVMMF_2007_47_8_a5
ER  - 
%0 Journal Article
%A Yu. V. Bibik
%T The second Hamiltonian structure for a special case of the Lotka–Volterra equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1340-1349
%V 47
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a5/
%G ru
%F ZVMMF_2007_47_8_a5
Yu. V. Bibik. The second Hamiltonian structure for a special case of the Lotka–Volterra equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 8, pp. 1340-1349. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_8_a5/